Beta-alanine carbon source
Group:
carbon source
Media:
RCH2_defined_noCarbon +
Beta-alanine (10 mM) +
Dimethyl Sulfoxide (1 vol%)
Culturing: CL21_ML4, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: RobinH_and_TrentonO on
13-Feb-19
Media components: 0.25 g/L
Ammonium chloride, 0.1 g/L
Potassium Chloride, 0.6 g/L
Sodium phosphate monobasic monohydrate, 30 mM
PIPES sesquisodium salt, Wolfe's mineral mix
(0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix
(0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Specific Phenotypes
For 9 genes in this experiment
For carbon source Beta-alanine in Ralstonia sp. UNC404CL21Col
For carbon source Beta-alanine across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
| Pathway | #Steps | #Present | #Specific |
| β-alanine degradation II | 2 | 2 | 2 |
| L-aspartate degradation I | 1 | 1 | 1 |
| 3-(4-hydroxyphenyl)pyruvate biosynthesis | 1 | 1 | 1 |
| L-aspartate biosynthesis | 1 | 1 | 1 |
| malate/L-aspartate shuttle pathway | 2 | 2 | 1 |
| L-tryptophan degradation IV (via indole-3-lactate) | 2 | 1 | 1 |
| β-alanine degradation I | 2 | 1 | 1 |
| atromentin biosynthesis | 2 | 1 | 1 |
| L-tyrosine degradation II | 2 | 1 | 1 |
| L-glutamate degradation II | 2 | 1 | 1 |
| ppGpp metabolism | 6 | 6 | 2 |
| L-phenylalanine biosynthesis I | 3 | 3 | 1 |
| L-tyrosine biosynthesis I | 3 | 3 | 1 |
| L-phenylalanine degradation II (anaerobic) | 3 | 2 | 1 |
| L-asparagine degradation III (mammalian) | 3 | 2 | 1 |
| sulfolactate degradation III | 3 | 1 | 1 |
| indole-3-acetate biosynthesis VI (bacteria) | 3 | 1 | 1 |
| L-tyrosine degradation IV (to 4-methylphenol) | 3 | 1 | 1 |
| (R)-cysteate degradation | 3 | 1 | 1 |
| L-tyrosine degradation III | 4 | 2 | 1 |
| L-phenylalanine degradation III | 4 | 2 | 1 |
| superpathway of L-aspartate and L-asparagine biosynthesis | 4 | 2 | 1 |
| L-tryptophan degradation VIII (to tryptophol) | 4 | 1 | 1 |
| L-tyrosine degradation I | 5 | 5 | 1 |
| acrylate degradation I | 5 | 3 | 1 |
| trans-4-hydroxy-L-proline degradation I | 5 | 3 | 1 |
| propanoyl-CoA degradation II | 5 | 3 | 1 |
| superpathway of plastoquinol biosynthesis | 5 | 2 | 1 |
| 4-hydroxybenzoate biosynthesis I (eukaryotes) | 5 | 1 | 1 |
| L-tryptophan degradation XIII (reductive Stickland reaction) | 5 | 1 | 1 |
| L-phenylalanine degradation VI (reductive Stickland reaction) | 5 | 1 | 1 |
| L-tyrosine degradation V (reductive Stickland reaction) | 5 | 1 | 1 |
| C4 photosynthetic carbon assimilation cycle, NAD-ME type | 11 | 7 | 2 |
| glyoxylate cycle | 6 | 6 | 1 |
| superpathway of L-threonine biosynthesis | 6 | 6 | 1 |
| β-alanine biosynthesis II | 6 | 5 | 1 |
| TCA cycle VIII (Chlamydia) | 6 | 5 | 1 |
| NAD(P)/NADPH interconversion | 6 | 3 | 1 |
| superpathway of sulfolactate degradation | 6 | 2 | 1 |
| coenzyme M biosynthesis II | 6 | 1 | 1 |
| anaerobic energy metabolism (invertebrates, cytosol) | 7 | 7 | 1 |
| C4 photosynthetic carbon assimilation cycle, PEPCK type | 14 | 8 | 2 |
| 2,4-dinitrotoluene degradation | 7 | 1 | 1 |
| myo-inositol degradation I | 7 | 1 | 1 |
| L-valine degradation I | 8 | 5 | 1 |
| superpathway of aromatic amino acid biosynthesis | 18 | 18 | 2 |
| superpathway of L-methionine biosynthesis (transsulfuration) | 9 | 7 | 1 |
| L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 4 | 1 |
| superpathway of L-phenylalanine biosynthesis | 10 | 10 | 1 |
| superpathway of L-tyrosine biosynthesis | 10 | 10 | 1 |
| superpathway of coenzyme A biosynthesis II (plants) | 10 | 9 | 1 |
| rosmarinic acid biosynthesis I | 10 | 2 | 1 |
| myo-, chiro- and scyllo-inositol degradation | 10 | 1 | 1 |
| (S)-reticuline biosynthesis I | 11 | 1 | 1 |
| superpathway of L-methionine biosynthesis (by sulfhydrylation) | 12 | 12 | 1 |
| superpathway of glyoxylate bypass and TCA | 12 | 10 | 1 |
| indole-3-acetate biosynthesis II | 12 | 4 | 1 |
| superpathway of L-isoleucine biosynthesis I | 13 | 13 | 1 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 1 |
| superpathway of rosmarinic acid biosynthesis | 14 | 2 | 1 |
| superpathway of anaerobic energy metabolism (invertebrates) | 17 | 12 | 1 |
| superpathway of L-lysine, L-threonine and L-methionine biosynthesis I | 18 | 16 | 1 |
| aspartate superpathway | 25 | 23 | 1 |
| superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 22 | 1 |
| anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 5 | 1 |
| superpathway of chorismate metabolism | 59 | 44 | 2 |
| Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 18 | 1 |