Experiment set2IT033 for Shewanella loihica PV-4

Compare to:

LB with Thallium(I) acetate 10 mg/ml

Group: stress
Media: LB + Thallium(I) acetate (10 mg/ml)
Culturing: PV4_ML1, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Adam on 12/11/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 810 E1,E2

Specific Phenotypes

For 12 genes in this experiment

For stress Thallium(I) acetate in Shewanella loihica PV-4

For stress Thallium(I) acetate across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Arsenic resistance 1
Butanol Biosynthesis 1
Iron acquisition in Vibrio 1
Isoleucine degradation 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Orphan regulatory proteins 1
Polyhydroxybutyrate metabolism 1
Ton and Tol transport systems 1
Transport of Iron 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 6 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
arsenate detoxification III 2 1 1
oleate β-oxidation 35 33 16
adipate degradation 5 4 2
adipate biosynthesis 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 9 5
fatty acid salvage 6 5 2
pyruvate fermentation to butanol II (engineered) 6 5 2
valproate β-oxidation 9 6 3
L-isoleucine degradation I 6 4 2
methyl ketone biosynthesis (engineered) 6 3 2
propanoate fermentation to 2-methylbutanoate 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
pyruvate fermentation to butanoate 7 3 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
L-valine degradation I 8 6 2
pyruvate fermentation to butanol I 8 4 2
arsenic detoxification (bacteria) 4 2 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
phenylacetate degradation I (aerobic) 9 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 4 2
arsenate detoxification I 6 3 1
6-gingerol analog biosynthesis (engineered) 6 2 1
arsenic detoxification (plants) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Arg/N-end rule pathway (eukaryotic) 14 10 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 4 2
glycerol degradation to butanol 16 10 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
2-methylpropene degradation 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 2
toluene degradation VI (anaerobic) 18 4 2
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
arsenic detoxification (yeast) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 21 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1