Experiment set2IT018 for Synechococcus elongatus PCC 7942

Compare to:

Flask growth in 60 uE Light-Dark 12:12

Group: light-dark
Media: BG11, pH=7.5
Culturing: SynE_ML6, 100ml Flask, Aerobic, at 30 (C), shaken=150 rpm
Growth: about 6.5 generations
By: Ben Rubin on 9/17/2014
Media components: 1.5 g/L Sodium nitrate, 0.04 g/L Potassium phosphate dibasic, 0.075 g/L Magnesium Sulfate Heptahydrate, 0.036 g/L Calcium chloride dihydrate, 0.006 g/L Citric Acid, 0.006 g/L Ferric ammonium citrate, 0.001 g/L EDTA (disodium salt), 0.02 g/L Sodium carbonate, Trace metal mix A5 (0.00286 g/L Boric Acid, 0.00181 g/L Manganese (II) chloride tetrahydrate, 0.000222 g/L Zinc sulfate heptahydrate, 0.00039 g/L Sodium Molybdate Dihydrate, 7.9e-05 g/L Copper (II) sulfate pentahydrate, 0.0494 mg/L Cobalt(II) nitrate hexahydrate)

Specific Phenotypes

For 20 genes in this experiment

SEED Subsystems

Subsystem #Specific
Succinate dehydrogenase 3
Conserved gene cluster associated with Met-tRNA formyltransferase 2
Serine-glyoxylate cycle 2
TCA Cycle 2
Terminal cytochrome d ubiquinol oxidases 2
Terminal cytochrome oxidases 2
Bacterial RNA-metabolizing Zn-dependent hydrolases 1
Calvin-Benson cycle 1
Chitin and N-acetylglucosamine utilization 1
Cyanobacterial Circadian Clock 1
Entner-Doudoroff Pathway 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
N-Acetyl-Galactosamine and Galactosamine Utilization 1
Potassium homeostasis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
aerobic respiration III (alternative oxidase pathway) 3 3 2
neolinustatin bioactivation 3 2 2
linustatin bioactivation 4 2 2
succinate to cytochrome bo oxidase electron transfer 2 1 1
linamarin degradation 2 1 1
succinate to cytochrome bd oxidase electron transfer 2 1 1
lotaustralin degradation 2 1 1
succinate to cytochrome bo quinol oxidase (cyanobacteria, cytoplamic membrane) 2 1 1
succinate to cytochrome c oxidase via plastocyanin (thylakoid membrane) 3 3 1
succinate to chytochrome c oxidase via cytochrome c6 (thylakoid membrane) 3 2 1
chitin degradation II (Vibrio) 6 2 2
cellulose degradation II (fungi) 3 1 1
aerobic respiration I (cytochrome c) 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
coumarin biosynthesis (via 2-coumarate) 5 2 1
α-tomatine degradation 6 1 1
chitin degradation III (Serratia) 7 2 1
L-lysine biosynthesis I 9 7 1
sucrose biosynthesis I (from photosynthesis) 9 7 1
TCA cycle III (animals) 10 7 1
peptidoglycan recycling II 10 3 1
glycolysis II (from fructose 6-phosphate) 11 10 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
gluconeogenesis III 12 8 1
Calvin-Benson-Bassham cycle 13 13 1
gluconeogenesis I 13 12 1
glycolysis I (from glucose 6-phosphate) 13 11 1
peptidoglycan recycling I 14 10 1
firefly bioluminescence 14 2 1
oxygenic photosynthesis 17 17 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 14 1
superpathway of hexitol degradation (bacteria) 18 12 1
superpathway of anaerobic sucrose degradation 19 14 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 12 1
superpathway of N-acetylneuraminate degradation 22 15 1
ethene biosynthesis V (engineered) 25 24 1
aspartate superpathway 25 21 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 19 1
1-butanol autotrophic biosynthesis (engineered) 27 21 1