Experiment set27S427 for Pseudomonas fluorescens SBW25-INTG

Compare to:

Inosine carbon source

Group: carbon source
Media: MME_noCarbon + Inosine (10 mM)
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C)
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 37 genes in this experiment

For carbon source Inosine in Pseudomonas fluorescens SBW25-INTG

For carbon source Inosine across organisms

SEED Subsystems

Subsystem #Specific
Purine Utilization 5
D-ribose utilization 4
Allantoin Utilization 3
Molybdenum cofactor biosynthesis 2
Purine conversions 2
Terminal cytochrome C oxidases 2
Transport of Molybdenum 2
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Biogenesis of c-type cytochromes 1
Butanol Biosynthesis 1
Choline and Betaine Uptake and Betaine Biosynthesis 1
Copper homeostasis 1
De Novo Pyrimidine Synthesis 1
Deoxyribose and Deoxynucleoside Catabolism 1
Experimental tye 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Heme and Siroheme Biosynthesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
LMPTP YwlE cluster 1
Photorespiration (oxidative C2 cycle) 1
Queuosine-Archaeosine Biosynthesis 1
Valine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamate degradation I 1 1 1
pyrimidine nucleobases salvage I 1 1 1
guanosine nucleotides degradation II 4 4 3
superpathway of guanosine nucleotides degradation (plants) 6 5 4
urate conversion to allantoin I 3 2 2
allantoin degradation to glyoxylate I 3 2 2
superpathway of purines degradation in plants 18 14 10
guanosine nucleotides degradation III 4 4 2
guanine and guanosine salvage II 2 2 1
indole-3-acetate biosynthesis III (bacteria) 2 2 1
pyrimidine nucleobases salvage II 2 2 1
acrylonitrile degradation I 2 2 1
indole-3-acetate biosynthesis IV (bacteria) 2 2 1
adenine and adenosine salvage II 2 2 1
adenosine nucleotides degradation I 8 7 4
purine nucleotides degradation I (plants) 12 10 6
guanosine nucleotides degradation I 4 3 2
ribose phosphorylation 2 1 1
arsenite to oxygen electron transfer 2 1 1
allantoin degradation to ureidoglycolate I (urea producing) 2 1 1
ureide biosynthesis 7 6 3
adenosine nucleotides degradation II 5 5 2
superpathway of allantoin degradation in plants 8 4 3
L-alanine degradation II (to D-lactate) 3 3 1
putrescine biosynthesis II 3 3 1
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 3 1
superpathway of allantoin degradation in yeast 6 4 2
superpathway of acrylonitrile degradation 3 2 1
L-arginine degradation X (arginine monooxygenase pathway) 3 2 1
2-deoxy-D-ribose degradation I 3 1 1
ethene biosynthesis IV (engineered) 3 1 1
urate conversion to allantoin II 3 1 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
urate conversion to allantoin III 3 1 1
purine nucleotides degradation II (aerobic) 11 11 3
superpathway of pyrimidine nucleobases salvage 4 4 1
inosine 5'-phosphate degradation 4 4 1
aerobic respiration I (cytochrome c) 4 3 1
glycolate and glyoxylate degradation I 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
tetrapyrrole biosynthesis II (from glycine) 4 2 1
purine nucleobases degradation II (anaerobic) 24 16 5
allantoin degradation to glyoxylate II 5 1 1
allantoin degradation to glyoxylate III 5 1 1
tetrapyrrole biosynthesis I (from glutamate) 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
Fe(II) oxidation 6 3 1
2-methyl-branched fatty acid β-oxidation 14 11 2
drosopterin and aurodrosopterin biosynthesis 7 5 1
superpathway of glycol metabolism and degradation 7 5 1
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
4-aminobutanoate degradation V 7 3 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
superpathway of polyamine biosynthesis II 8 6 1
superpathway of heme b biosynthesis from glycine 8 5 1
theophylline degradation 9 1 1
superpathway of heme b biosynthesis from glutamate 10 8 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of pyrimidine ribonucleosides salvage 10 6 1
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
pyruvate fermentation to hexanol (engineered) 11 7 1
indole-3-acetate biosynthesis II 12 5 1
purine nucleobases degradation I (anaerobic) 15 6 1
methylaspartate cycle 19 9 1
superpathway of bacteriochlorophyll a biosynthesis 26 5 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
adenosylcobalamin biosynthesis II (aerobic) 33 30 1
adenosylcobalamin biosynthesis I (anaerobic) 36 27 1