Experiment set27S413 for Pseudomonas fluorescens SBW25-INTG

Compare to:

Cytidine carbon source

Group: carbon source
Media: MME_noCarbon + Cytidine (10 mM)
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C)
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 8 genes in this experiment

For carbon source Cytidine in Pseudomonas fluorescens SBW25-INTG

For carbon source Cytidine across organisms

SEED Subsystems

Subsystem #Specific
D-ribose utilization 4
Deoxyribose and Deoxynucleoside Catabolism 1
Folate Biosynthesis 1
Fructose utilization 1
Pentose phosphate pathway 1
Pyruvate Alanine Serine Interconversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glycine betaine biosynthesis IV (from glycine) 3 2 2
β-alanine degradation II 2 2 1
ribose phosphorylation 2 1 1
2-deoxy-D-ribose degradation I 3 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 2 1
pentose phosphate pathway (non-oxidative branch) I 5 5 1
fatty acid β-oxidation II (plant peroxisome) 5 4 1
propanoyl-CoA degradation II 5 4 1
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 4 1
fatty acid β-oxidation VII (yeast peroxisome) 5 3 1
(5Z)-dodecenoate biosynthesis II 6 6 1
β-alanine biosynthesis II 6 5 1
methyl ketone biosynthesis (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 4 2
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 4 2
jasmonic acid biosynthesis 19 7 3
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
pentose phosphate pathway 8 8 1
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
Rubisco shunt 10 8 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 5 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 2 1
Bifidobacterium shunt 15 12 1
superpathway of glucose and xylose degradation 17 16 1