Experiment set25S66 for Pseudomonas fluorescens SBW25-INTG

Compare to:

D-(+)-Galactosamine hydrochloride carbon source

Group: carbon source
Media: MME_noCarbon + D-(+)-Galactosamine hydrochloride (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 13 genes in this experiment

For carbon source D-(+)-Galactosamine hydrochloride in Pseudomonas fluorescens SBW25-INTG

For carbon source D-(+)-Galactosamine hydrochloride across organisms

SEED Subsystems

Subsystem #Specific
L-Arabinose utilization 5
Biogenesis of c-type cytochromes 1
Copper homeostasis 1
D-galactonate catabolism 1
Fatty Acid Biosynthesis FASII 1
mycolic acid synthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
D-serine degradation 3 3 3
L-serine degradation 3 3 2
L-cysteine degradation II 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
trehalose degradation VI (periplasmic) 2 1 1
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
D-galactonate degradation 3 3 1
L-methionine biosynthesis II 6 5 2
glycine betaine degradation III 7 7 2
gondoate biosynthesis (anaerobic) 4 4 1
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 9 3
glycine betaine degradation I 8 6 2
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 3 2
palmitate biosynthesis III 29 21 7
tetradecanoate biosynthesis (mitochondria) 25 17 6
palmitate biosynthesis II (type II fatty acid synthase) 31 29 7
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of fatty acids biosynthesis (E. coli) 53 49 11
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 18 4
cis-vaccenate biosynthesis 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
fatty acid elongation -- saturated 5 4 1
D-galactose degradation I (Leloir pathway) 5 3 1
superpathway of fatty acid biosynthesis II (plant) 43 38 8
8-amino-7-oxononanoate biosynthesis I 11 9 2
even iso-branched-chain fatty acid biosynthesis 34 24 6
odd iso-branched-chain fatty acid biosynthesis 34 24 6
anteiso-branched-chain fatty acid biosynthesis 34 24 6
(5Z)-dodecenoate biosynthesis II 6 6 1
(5Z)-dodecenoate biosynthesis I 6 6 1
L-arabinose degradation III 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
L-arabinose degradation V 6 3 1
petroselinate biosynthesis 6 2 1
streptorubin B biosynthesis 34 20 5
L-glucose degradation 7 3 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
biotin biosynthesis I 15 13 2
superpathway of fatty acid biosynthesis I (E. coli) 16 14 2
L-arabinose degradation IV 8 5 1
2-allylmalonyl-CoA biosynthesis 8 2 1
purine nucleobases degradation II (anaerobic) 24 16 2
mycolate biosynthesis 205 20 5
superpathway of pentose and pentitol degradation 42 16 1
superpathway of mycolate biosynthesis 239 21 5