Experiment set25S55 for Pseudomonas fluorescens SBW25-INTG

Compare to:

4-Aminobutyric acid carbon source

Group: carbon source
Media: MME_noCarbon + 4-Aminobutyric acid (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 22 genes in this experiment

For carbon source 4-Aminobutyric acid in Pseudomonas fluorescens SBW25-INTG

For carbon source 4-Aminobutyric acid across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 4
Potassium homeostasis 2
Alginate metabolism 1
Arginine and Ornithine Degradation 1
Bacterial RNA-metabolizing Zn-dependent hydrolases 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
Folate Biosynthesis 1
Fructose utilization 1
Glutathione-regulated potassium-efflux system and associated functions 1
HMG CoA Synthesis 1
Homogentisate pathway of aromatic compound degradation 1
Leucine Degradation and HMG-CoA Metabolism 1
Lysine degradation 1
Pentose phosphate pathway 1
Polyamine Metabolism 1
Pyruvate Alanine Serine Interconversions 1
Salicylate and gentisate catabolism 1
Serine-glyoxylate cycle 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
β-alanine degradation II 2 2 1
4-aminobutanoate degradation III 2 2 1
putrescine degradation V 2 2 1
4-aminobutanoate degradation I 2 2 1
4-aminobutanoate degradation II 2 2 1
L-ornithine biosynthesis II 3 3 1
L-proline biosynthesis III (from L-ornithine) 3 3 1
superpathway of 4-aminobutanoate degradation 3 3 1
L-arginine degradation I (arginase pathway) 3 3 1
L-arginine degradation VI (arginase 2 pathway) 4 4 1
GABA shunt II 4 3 1
GABA shunt I 4 2 1
L-tyrosine degradation I 5 5 1
L-ornithine biosynthesis I 5 5 1
L-arginine degradation XIII (reductive Stickland reaction) 5 5 1
L-lysine degradation IV 5 5 1
pentose phosphate pathway (non-oxidative branch) I 5 5 1
L-arginine degradation II (AST pathway) 5 5 1
β-alanine biosynthesis II 6 5 1
L-leucine degradation I 6 5 1
L-lysine degradation X 6 5 1
L-lysine degradation III 6 2 1
L-Nδ-acetylornithine biosynthesis 7 6 1
L-lysine degradation I 7 4 1
4-aminobutanoate degradation V 7 3 1
alginate degradation 7 2 1
pentose phosphate pathway 8 8 1
L-citrulline biosynthesis 8 8 1
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-lysine biosynthesis I 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
Rubisco shunt 10 8 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 7 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
superpathway of L-citrulline metabolism 12 10 1
superpathway of L-arginine and L-ornithine degradation 13 9 1
Bifidobacterium shunt 15 12 1
superpathway of glucose and xylose degradation 17 16 1
superpathway of arginine and polyamine biosynthesis 17 15 1
nicotine degradation I (pyridine pathway) 17 5 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
aspartate superpathway 25 22 1
superpathway of L-lysine degradation 43 17 1