Experiment set25S46 for Pseudomonas fluorescens SBW25-INTG

Compare to:

L-Isoleucine carbon source

Group: carbon source
Media: MME_noCarbon + L-Isoleucine (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 15 genes in this experiment

For carbon source L-Isoleucine in Pseudomonas fluorescens SBW25-INTG

For carbon source L-Isoleucine across organisms

SEED Subsystems

Subsystem #Specific
Isoleucine degradation 7
Valine degradation 7
Leucine Degradation and HMG-CoA Metabolism 4
Arginine and Ornithine Degradation 2
Isobutyryl-CoA to Propionyl-CoA Module 2
Methylcitrate cycle 2
Propionate-CoA to Succinate Module 2
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Biotin biosynthesis 1
Butanol Biosynthesis 1
Polyhydroxybutyrate metabolism 1
Serine-glyoxylate cycle 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 3 3
2-methylcitrate cycle I 5 5 3
2-methylcitrate cycle II 6 5 3
acetoacetate degradation (to acetyl CoA) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glycine biosynthesis II 3 3 1
L-proline biosynthesis III (from L-ornithine) 3 3 1
benzoyl-CoA biosynthesis 3 3 1
L-ornithine biosynthesis II 3 3 1
glycine cleavage 3 3 1
ketolysis 3 3 1
L-arginine degradation I (arginase pathway) 3 3 1
2-oxoglutarate decarboxylation to succinyl-CoA 3 3 1
pyruvate decarboxylation to acetyl CoA I 3 3 1
glyoxylate cycle 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
polyhydroxybutanoate biosynthesis 3 2 1
pyruvate fermentation to hexanol (engineered) 11 7 3
partial TCA cycle (obligate autotrophs) 8 8 2
L-arginine degradation VI (arginase 2 pathway) 4 4 1
nitrogen remobilization from senescing leaves 8 6 2
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
oleate β-oxidation 35 33 8
TCA cycle II (plants and fungi) 9 7 2
TCA cycle V (2-oxoglutarate synthase) 9 7 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 2
TCA cycle VI (Helicobacter) 9 7 2
TCA cycle VII (acetate-producers) 9 7 2
valproate β-oxidation 9 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 3
2-methyl-branched fatty acid β-oxidation 14 11 3
L-arginine degradation XIII (reductive Stickland reaction) 5 5 1
L-ornithine biosynthesis I 5 5 1
L-arginine degradation II (AST pathway) 5 5 1
TCA cycle I (prokaryotic) 10 9 2
fatty acid β-oxidation II (plant peroxisome) 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
TCA cycle III (animals) 10 7 2
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation VII (yeast peroxisome) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 5 2
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
reductive TCA cycle I 11 6 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
fatty acid salvage 6 6 1
superpathway of glyoxylate bypass and TCA 12 11 2
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
reductive TCA cycle II 12 5 2
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 7 3
L-Nδ-acetylornithine biosynthesis 7 6 1
fatty acid β-oxidation I (generic) 7 6 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
acetyl-CoA fermentation to butanoate 7 3 1
pyruvate fermentation to butanoate 7 3 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 3
L-citrulline biosynthesis 8 8 1
2-deoxy-D-ribose degradation II 8 7 1
L-valine degradation I 8 6 1
mixed acid fermentation 16 11 2
pyruvate fermentation to butanol I 8 4 1
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
L-lysine biosynthesis I 9 9 1
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 1 1
superpathway of testosterone and androsterone degradation 28 7 3
methylaspartate cycle 19 9 2
L-arginine biosynthesis II (acetyl cycle) 10 10 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 5 1
methyl tert-butyl ether degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of L-citrulline metabolism 12 10 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 4 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 4 1
L-glutamate degradation VII (to butanoate) 12 3 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 4 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
L-tryptophan degradation III (eukaryotic) 15 6 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of arginine and polyamine biosynthesis 17 15 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
aspartate superpathway 25 22 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 17 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1