Experiment set25S45 for Pseudomonas fluorescens SBW25-INTG

Compare to:

L-Valine carbon source

Group: carbon source
Media: MME_noCarbon + L-Valine (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 44 genes in this experiment

For carbon source L-Valine in Pseudomonas fluorescens SBW25-INTG

For carbon source L-Valine across organisms

SEED Subsystems

Subsystem #Specific
Valine degradation 10
Isoleucine degradation 7
Isobutyryl-CoA to Propionyl-CoA Module 5
Leucine Degradation and HMG-CoA Metabolism 5
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 4
Methylcitrate cycle 3
Propionate-CoA to Succinate Module 3
Acetyl-CoA fermentation to Butyrate 2
Anaerobic respiratory reductases 2
Branched-Chain Amino Acid Biosynthesis 2
Butanol Biosynthesis 2
ABC transporter alkylphosphonate (TC 3.A.1.9.1) 1
Arginine and Ornithine Degradation 1
Aromatic amino acid degradation 1
Bacterial Cytoskeleton 1
Benzoate transport and degradation cluster 1
Ethanolamine utilization 1
Fermentations: Lactate 1
Fermentations: Mixed acid 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycine and Serine Utilization 1
HMG CoA Synthesis 1
Histidine Degradation 1
MLST 1
Plasmid replication 1
Propanediol utilization 1
Pyruvate Alanine Serine Interconversions 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Threonine anaerobic catabolism gene cluster 1
Two cell division clusters relating to chromosome partitioning 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 3 3
L-methionine degradation II 3 3 2
L-threonine degradation I 6 4 4
2-methylcitrate cycle I 5 5 3
β-alanine degradation II 2 2 1
acetate and ATP formation from acetyl-CoA I 2 2 1
2-methylcitrate cycle II 6 5 3
sulfoacetaldehyde degradation I 2 1 1
L-threonine degradation V 2 1 1
β-alanine degradation I 2 1 1
L-isoleucine biosynthesis I (from threonine) 7 7 3
propanoyl-CoA degradation II 5 4 2
L-valine degradation I 8 6 3
2-methyl-branched fatty acid β-oxidation 14 11 5
benzoyl-CoA biosynthesis 3 3 1
2-oxoglutarate decarboxylation to succinyl-CoA 3 3 1
pyruvate decarboxylation to acetyl CoA I 3 3 1
glycine cleavage 3 3 1
L-arginine degradation I (arginase pathway) 3 3 1
superpathway of acetate utilization and formation 3 3 1
L-proline biosynthesis III (from L-ornithine) 3 3 1
glycine biosynthesis II 3 3 1
L-ornithine biosynthesis II 3 3 1
pyruvate fermentation to acetate II 3 3 1
glyoxylate cycle 6 5 2
pyruvate fermentation to acetate I 3 2 1
pyruvate fermentation to acetate VII 3 2 1
pyruvate fermentation to acetate IV 3 2 1
partial TCA cycle (obligate autotrophs) 8 8 2
L-arginine degradation VI (arginase 2 pathway) 4 4 1
L-histidine degradation I 4 4 1
nitrogen remobilization from senescing leaves 8 6 2
pyruvate fermentation to acetate and (S)-lactate I 4 3 1
pyruvate fermentation to acetate and lactate II 4 2 1
sulfolactate degradation II 4 1 1
superpathway of L-isoleucine biosynthesis I 13 13 3
TCA cycle V (2-oxoglutarate synthase) 9 7 2
TCA cycle VI (Helicobacter) 9 7 2
TCA cycle VII (acetate-producers) 9 7 2
TCA cycle II (plants and fungi) 9 7 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 2
superpathway of L-threonine metabolism 18 11 4
superpathway of glyoxylate cycle and fatty acid degradation 14 12 3
hypoglycin biosynthesis 14 4 3
L-ornithine biosynthesis I 5 5 1
adipate degradation 5 5 1
L-arginine degradation II (AST pathway) 5 5 1
L-histidine degradation II 5 5 1
L-arginine degradation XIII (reductive Stickland reaction) 5 5 1
TCA cycle I (prokaryotic) 10 9 2
fatty acid β-oxidation II (plant peroxisome) 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
ethanolamine utilization 5 4 1
adipate biosynthesis 5 4 1
TCA cycle III (animals) 10 7 2
acetylene degradation (anaerobic) 5 3 1
acrylate degradation I 5 3 1
ferrichrome A biosynthesis 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
(S)-propane-1,2-diol degradation 5 2 1
mixed acid fermentation 16 11 3
reductive TCA cycle I 11 6 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
superpathway of branched chain amino acid biosynthesis 17 17 3
superpathway of glyoxylate bypass and TCA 12 11 2
β-alanine biosynthesis II 6 5 1
L-leucine degradation I 6 5 1
methyl ketone biosynthesis (engineered) 6 4 1
L-histidine degradation III 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
reductive TCA cycle II 12 5 2
superpathway of sulfolactate degradation 6 2 1
superpathway of taurine degradation 6 2 1
methanogenesis from acetate 6 2 1
L-Nδ-acetylornithine biosynthesis 7 6 1
fatty acid β-oxidation I (generic) 7 6 1
myo-inositol degradation I 7 6 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
acetyl-CoA fermentation to butanoate 7 3 1
2,4-dinitrotoluene degradation 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 3
L-citrulline biosynthesis 8 8 1
L-histidine degradation VI 8 7 1
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 4 1
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-lysine biosynthesis I 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
flavin biosynthesis I (bacteria and plants) 9 8 1
flavin biosynthesis III (fungi) 9 7 1
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
phenylacetate degradation I (aerobic) 9 4 1
superpathway of L-alanine fermentation (Stickland reaction) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
methylaspartate cycle 19 9 2
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
myo-, chiro- and scyllo-inositol degradation 10 6 1
flavin biosynthesis II (archaea) 10 5 1
3-phenylpropanoate degradation 10 5 1
L-lysine fermentation to acetate and butanoate 10 3 1
pyruvate fermentation to hexanol (engineered) 11 7 1
superpathway of phenylethylamine degradation 11 6 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 33 3
superpathway of L-citrulline metabolism 12 10 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 4 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
cyclosporin A biosynthesis 15 2 1
superpathway of arginine and polyamine biosynthesis 17 15 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
heterolactic fermentation 18 13 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 13 1
superpathway of methanogenesis 21 2 1
superpathway of N-acetylneuraminate degradation 22 14 1
purine nucleobases degradation II (anaerobic) 24 16 1
aspartate superpathway 25 22 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of L-lysine degradation 43 17 1