Experiment set25S36 for Pseudomonas fluorescens SBW25-INTG

Compare to:

D-Mannitol carbon source

Group: carbon source
Media: MME_noCarbon + D-Mannitol (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 31-Jan-23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 18 genes in this experiment

For carbon source D-Mannitol in Pseudomonas fluorescens SBW25-INTG

For carbon source D-Mannitol across organisms

SEED Subsystems

Subsystem #Specific
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 8
D-ribose utilization 2
Mannitol Utilization 2
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Butanol Biosynthesis 1
De Novo Pyrimidine Synthesis 1
Fructose utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
LMPTP YwlE cluster 1
Queuosine-Archaeosine Biosynthesis 1
Sucrose utilization 1
Sucrose utilization Shewanella 1
Valine degradation 1
Xylose utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
pyrimidine nucleobases salvage I 1 1 1
pyrimidine nucleobases salvage II 2 2 1
xylitol degradation I 2 2 1
D-xylose degradation I 2 2 1
D-arabinitol degradation I 2 1 1
mannitol cycle 5 3 2
D-sorbitol degradation I 3 3 1
sucrose degradation I (sucrose phosphotransferase) 3 2 1
queuosine biosynthesis I (de novo) 4 4 1
superpathway of pyrimidine nucleobases salvage 4 4 1
sucrose degradation IV (sucrose phosphorylase) 4 3 1
sucrose degradation III (sucrose invertase) 4 3 1
oleate β-oxidation (isomerase-dependent, yeast) 4 2 1
sucrose degradation VII (sucrose 3-dehydrogenase) 4 1 1
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 4 1
propanoyl-CoA degradation II 5 4 1
sucrose degradation II (sucrose synthase) 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 4 1
fatty acid β-oxidation VII (yeast peroxisome) 5 3 1
(5Z)-dodecenoate biosynthesis II 6 6 1
methyl ketone biosynthesis (engineered) 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 4 2
10-cis-heptadecenoyl-CoA degradation (yeast) 12 4 2
jasmonic acid biosynthesis 19 7 3
2-methyl-branched fatty acid β-oxidation 14 11 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
superpathway of pyrimidine ribonucleosides salvage 10 6 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 5 1
pyruvate fermentation to hexanol (engineered) 11 7 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 2 1
superpathway of glucose and xylose degradation 17 16 1
heterolactic fermentation 18 13 1
superpathway of anaerobic sucrose degradation 19 14 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of pentose and pentitol degradation 42 16 1