Experiment set24IT045 for Pseudomonas fluorescens SBW25-INTG

Compare to:

L-Leucine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + L-Leucine (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 13 genes in this experiment

For carbon source L-Leucine in Pseudomonas fluorescens SBW25-INTG

For carbon source L-Leucine across organisms

SEED Subsystems

Subsystem #Specific
Arginine and Ornithine Degradation 7
Acid resistance mechanisms 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Lipid A modifications 1
Methylcitrate cycle 1
Polyamine Metabolism 1
Propionate-CoA to Succinate Module 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
arginine dependent acid resistance 1 1 1
L-glutamate degradation I 1 1 1
L-arginine degradation II (AST pathway) 5 5 3
L-arginine degradation III (arginine decarboxylase/agmatinase pathway) 2 2 1
putrescine biosynthesis I 2 2 1
pseudouridine degradation 2 1 1
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 3 1
L-ornithine biosynthesis II 3 3 1
putrescine biosynthesis II 3 3 1
L-arginine degradation I (arginase pathway) 3 3 1
L-alanine degradation II (to D-lactate) 3 3 1
L-proline biosynthesis III (from L-ornithine) 3 3 1
ethene biosynthesis IV (engineered) 3 1 1
L-arginine degradation VI (arginase 2 pathway) 4 4 1
superpathway of putrescine biosynthesis 4 4 1
spermidine biosynthesis III 4 1 1
L-ornithine biosynthesis I 5 5 1
2-methylcitrate cycle I 5 5 1
L-arginine degradation XIII (reductive Stickland reaction) 5 5 1
2-methylcitrate cycle II 6 5 1
L-Nδ-acetylornithine biosynthesis 7 6 1
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
4-aminobutanoate degradation V 7 3 1
L-citrulline biosynthesis 8 8 1
superpathway of polyamine biosynthesis I 8 6 1
superpathway of polyamine biosynthesis II 8 6 1
superpathway of arginine and polyamine biosynthesis 17 15 2
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-lysine biosynthesis I 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 7 1
superpathway of L-citrulline metabolism 12 10 1
superpathway of L-arginine and L-ornithine degradation 13 9 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
methylaspartate cycle 19 9 1
aspartate superpathway 25 22 1