Experiment set24IT030 for Pseudomonas fluorescens SBW25-INTG

Compare to:

N-Acetyl-D-Glucosamine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + N-Acetyl-D-Glucosamine (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 13 genes in this experiment

For carbon source N-Acetyl-D-Glucosamine in Pseudomonas fluorescens SBW25-INTG

For carbon source N-Acetyl-D-Glucosamine across organisms

SEED Subsystems

Subsystem #Specific
Chitin and N-acetylglucosamine utilization 3
Calvin-Benson cycle 2
Pentose phosphate pathway 2
UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis 2
Folate Biosynthesis 1
Fructose and Mannose Inducible PTS 1
Fructose utilization 1
Mannitol Utilization 1
Sialic Acid Metabolism 1
Trehalose Uptake and Utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
N-acetylglucosamine degradation I 2 2 2
pentose phosphate pathway (partial) 3 3 2
N-acetylglucosamine degradation II 3 2 2
pentose phosphate pathway (non-oxidative branch) I 5 5 2
pentose phosphate pathway (non-oxidative branch) II 6 5 2
D-apiose degradation I 3 2 1
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation 6 2 2
pentose phosphate pathway 8 8 2
tetrahydromonapterin biosynthesis 4 2 1
D-galactosamine and N-acetyl-D-galactosamine degradation 4 2 1
chitin derivatives degradation 8 2 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 2
UDP-N-acetyl-D-glucosamine biosynthesis I 5 5 1
Rubisco shunt 10 8 2
N-acetyl-D-galactosamine degradation 5 2 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 2
UDP-N-acetyl-D-glucosamine biosynthesis II 6 4 1
UDP-N-acetyl-D-galactosamine biosynthesis III 6 2 1
Calvin-Benson-Bassham cycle 13 10 2
UDP-N-acetyl-D-galactosamine biosynthesis II 7 5 1
chitin degradation I (archaea) 7 1 1
superpathway of glucose and xylose degradation 17 16 2
oxygenic photosynthesis 17 11 2
chitin biosynthesis 9 5 1
CMP-legionaminate biosynthesis I 10 2 1
O-antigen building blocks biosynthesis (E. coli) 11 10 1
superpathway of N-acetylneuraminate degradation 22 14 2
ethene biosynthesis V (engineered) 25 18 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
1-butanol autotrophic biosynthesis (engineered) 27 19 2
peptidoglycan recycling I 14 11 1
Bifidobacterium shunt 15 12 1
superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 24 9 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 12 1