Experiment set22IT004 for Pseudomonas fluorescens SBW25-INTG

Compare to:

Guanosine 10 mM carbon source

Group: carbon source
Media: MME_noNitrogen_noCarbon + Guanosine (10 mM) + Ammonium chloride (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 8-Mar-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 23 genes in this experiment

For carbon source Guanosine in Pseudomonas fluorescens SBW25-INTG

For carbon source Guanosine across organisms

SEED Subsystems

Subsystem #Specific
Purine Utilization 5
D-ribose utilization 4
Allantoin Utilization 3
Molybdenum cofactor biosynthesis 3
Transport of Molybdenum 3
Purine conversions 2
Biogenesis of c-type cytochromes 1
Copper homeostasis 1
Deoxyribose and Deoxynucleoside Catabolism 1
Photorespiration (oxidative C2 cycle) 1
Queuosine-Archaeosine Biosynthesis 1
Terminal cytochrome C oxidases 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
guanosine nucleotides degradation II 4 4 3
superpathway of guanosine nucleotides degradation (plants) 6 5 4
allantoin degradation to glyoxylate I 3 2 2
urate conversion to allantoin I 3 2 2
superpathway of purines degradation in plants 18 14 10
guanosine nucleotides degradation III 4 4 2
adenine and adenosine salvage II 2 2 1
guanine and guanosine salvage II 2 2 1
adenosine nucleotides degradation I 8 7 4
purine nucleotides degradation I (plants) 12 10 6
guanosine nucleotides degradation I 4 3 2
allantoin degradation to ureidoglycolate I (urea producing) 2 1 1
arsenite to oxygen electron transfer 2 1 1
ribose phosphorylation 2 1 1
ureide biosynthesis 7 6 3
adenosine nucleotides degradation II 5 5 2
superpathway of allantoin degradation in plants 8 4 3
superpathway of allantoin degradation in yeast 6 4 2
arsenite to oxygen electron transfer (via azurin) 3 1 1
urate conversion to allantoin III 3 1 1
urate conversion to allantoin II 3 1 1
2-deoxy-D-ribose degradation I 3 1 1
purine nucleotides degradation II (aerobic) 11 11 3
inosine 5'-phosphate degradation 4 4 1
glycolate and glyoxylate degradation I 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
purine nucleobases degradation II (anaerobic) 24 16 5
allantoin degradation to glyoxylate III 5 1 1
allantoin degradation to glyoxylate II 5 1 1
Fe(II) oxidation 6 3 1
drosopterin and aurodrosopterin biosynthesis 7 5 1
superpathway of glycol metabolism and degradation 7 5 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
theophylline degradation 9 1 1
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
purine nucleobases degradation I (anaerobic) 15 6 1