Experiment set21IT030 for Pseudomonas fluorescens SBW25-INTG

Compare to:

Arabitol 10 mM carbon source

Group: carbon source
Media: MME_noNitrogen_noCarbon + Arabitol (10 mM) + Ammonium chloride (10 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 8-Mar-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 17 genes in this experiment

For carbon source Arabitol in Pseudomonas fluorescens SBW25-INTG

For carbon source Arabitol across organisms

SEED Subsystems

Subsystem #Specific
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 7
Xylose utilization 4
Transport of Zinc 2
Fatty Acid Biosynthesis FASII 1
Fructose utilization 1
Hemin transport system 1
L-Arabinose utilization 1
Mannitol Utilization 1
Nitrate and nitrite ammonification 1
mycolic acid synthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
xylitol degradation I 2 2 2
D-xylose degradation I 2 2 1
D-arabinitol degradation I 2 1 1
ribitol degradation I 2 1 1
D-sorbitol degradation I 3 3 1
L-arabinose degradation III 6 5 2
L-lyxonate degradation 3 2 1
L-arabinose degradation II 3 1 1
erythritol degradation II 3 1 1
L-valine biosynthesis 4 4 1
gondoate biosynthesis (anaerobic) 4 4 1
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 9 3
L-threitol degradation 4 1 1
palmitate biosynthesis III 29 21 7
tetradecanoate biosynthesis (mitochondria) 25 17 6
palmitate biosynthesis II (type II fatty acid synthase) 31 29 7
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of fatty acids biosynthesis (E. coli) 53 49 11
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 18 4
pyruvate fermentation to isobutanol (engineered) 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
cis-vaccenate biosynthesis 5 4 1
fatty acid elongation -- saturated 5 4 1
mannitol cycle 5 3 1
superpathway of fatty acid biosynthesis II (plant) 43 38 8
8-amino-7-oxononanoate biosynthesis I 11 9 2
odd iso-branched-chain fatty acid biosynthesis 34 24 6
even iso-branched-chain fatty acid biosynthesis 34 24 6
anteiso-branched-chain fatty acid biosynthesis 34 24 6
(5Z)-dodecenoate biosynthesis II 6 6 1
(5Z)-dodecenoate biosynthesis I 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
L-isoleucine biosynthesis IV 6 4 1
stearate biosynthesis IV 6 4 1
L-arabinose degradation V 6 3 1
petroselinate biosynthesis 6 2 1
streptorubin B biosynthesis 34 20 5
L-isoleucine biosynthesis I (from threonine) 7 7 1
L-isoleucine biosynthesis III 7 4 1
superpathway of pentose and pentitol degradation 42 16 6
biotin biosynthesis I 15 13 2
superpathway of fatty acid biosynthesis I (E. coli) 16 14 2
L-isoleucine biosynthesis II 8 5 1
L-arabinose degradation IV 8 5 1
2-allylmalonyl-CoA biosynthesis 8 2 1
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of glucose and xylose degradation 17 16 1
superpathway of L-threonine metabolism 18 11 1
mycolate biosynthesis 205 20 5
superpathway of mycolate biosynthesis 239 21 5