Experiment set1S86 for Rhodanobacter denitrificans MT42

Compare to:

R2A_PIPES with Cadmium chloride 64 uM

Group: stress
Media: R2A_PIPES + Cadmium chloride (64 uM), pH=7
Culturing: Rhodanobacter_MT42_ML2, 96 well deep well block, Aerobic, at 23 (C), shaken=700 rpm
By: Hans and Hira on 1/10/25
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate, 30 mM PIPES sesquisodium salt

Specific Phenotypes

For 10 genes in this experiment

For stress Cadmium chloride in Rhodanobacter denitrificans MT42

For stress Cadmium chloride across organisms

SEED Subsystems

Subsystem #Specific
Cobalt-zinc-cadmium resistance 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Cysteine Biosynthesis 1
Glycine and Serine Utilization 1
Isoleucine degradation 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Polyhydroxybutyrate metabolism 1
Pyruvate Alanine Serine Interconversions 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
L-cysteine degradation II 3 3 2
benzoyl-CoA biosynthesis 3 3 2
D-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
fatty acid β-oxidation I (generic) 7 6 3
glycine betaine degradation III 7 4 3
adipate degradation 5 5 2
oleate β-oxidation 35 32 14
adipate biosynthesis 5 4 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
glutaryl-CoA degradation 5 3 2
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 4 3
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 4
2-methyl-branched fatty acid β-oxidation 14 9 5
glycine degradation 3 3 1
fatty acid salvage 6 5 2
L-methionine biosynthesis II 6 5 2
L-isoleucine degradation I 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
valproate β-oxidation 9 5 3
methyl ketone biosynthesis (engineered) 6 3 2
propanoate fermentation to 2-methylbutanoate 6 3 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 3 2
L-valine degradation I 8 3 2
pyruvate fermentation to butanol I 8 3 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 3 2
L-glutamate degradation V (via hydroxyglutarate) 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
3-phenylpropanoate degradation 10 5 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 3 2
L-glutamate degradation VII (to butanoate) 12 5 2
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 3 3
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
L-tryptophan degradation III (eukaryotic) 15 11 2
glycerol degradation to butanol 16 9 2
purine nucleobases degradation II (anaerobic) 24 9 3
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
toluene degradation VI (anaerobic) 18 3 2
methyl tert-butyl ether degradation 10 3 1
gallate degradation III (anaerobic) 11 3 1
androstenedione degradation I (aerobic) 25 8 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
androstenedione degradation II (anaerobic) 27 6 2
superpathway of testosterone and androsterone degradation 28 8 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 10 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 10 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 6 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1