Experiment set1S85 for Rhodanobacter denitrificans MT42

Compare to:

R2A_PIPES with Cadmium chloride 64 uM

Group: stress
Media: R2A_PIPES + Cadmium chloride (64 uM), pH=7
Culturing: Rhodanobacter_MT42_ML2, 96 well deep well block, Aerobic, at 23 (C), shaken=700 rpm
By: Hans and Hira on 1/10/25
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate, 30 mM PIPES sesquisodium salt

Specific Phenotypes

For 13 genes in this experiment

For stress Cadmium chloride in Rhodanobacter denitrificans MT42

For stress Cadmium chloride across organisms

SEED Subsystems

Subsystem #Specific
Cobalt-zinc-cadmium resistance 2
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Cysteine Biosynthesis 1
Isoleucine degradation 1
Methionine Biosynthesis 1
One-carbon metabolism by tetrahydropterines 1
Polyhydroxybutyrate metabolism 1
Ribosomal protein S12p Asp methylthiotransferase 1
Serine-glyoxylate cycle 1
Teichoic and lipoteichoic acids biosynthesis 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation I (generic) 7 6 3
adipate degradation 5 5 2
oleate β-oxidation 35 32 14
adipate biosynthesis 5 4 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 4
2-methyl-branched fatty acid β-oxidation 14 9 5
fatty acid salvage 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
valproate β-oxidation 9 5 3
propanoate fermentation to 2-methylbutanoate 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
pyruvate fermentation to butanoate 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
pyruvate fermentation to butanol I 8 3 2
L-valine degradation I 8 3 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
phenylacetate degradation I (aerobic) 9 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
L-glutamate degradation V (via hydroxyglutarate) 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
3-phenylpropanoate degradation 10 5 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 3 2
L-glutamate degradation VII (to butanoate) 12 5 2
6-gingerol analog biosynthesis (engineered) 6 2 1
folate transformations I 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 3 3
L-tryptophan degradation III (eukaryotic) 15 11 2
glycerol degradation to butanol 16 9 2
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
folate transformations III (E. coli) 9 9 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
toluene degradation VI (anaerobic) 18 3 2
methyl tert-butyl ether degradation 10 3 1
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria) 10 3 1
folate transformations II (plants) 11 10 1
gallate degradation III (anaerobic) 11 3 1
androstenedione degradation I (aerobic) 25 8 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
androstenedione degradation II (anaerobic) 27 6 2
superpathway of testosterone and androsterone degradation 28 8 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 10 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 10 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 6 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 25 1