Experiment set1S344 for Rhodopseudomonas palustris CGA009

Compare to:

Sebacic acid carbon source; anaerobic

Group: carbon source
Media: PM + Sebacic acid (1.5 mM) + Sodium bicarbonate (10 mM) + Light intensity (30 µmol photons/m2/s from a 60-W incandescent light bulb)
Culturing: RPal_CGA009_ML8, tube, Anaerobic, at 30 (C)
By: Rpal_Yasu on 9/1/24
Media components: 12.5 mM Disodium phosphate, 12.5 mM Potassium phosphate monobasic, 1 g/L Ammonium Sulfate, 0.1 mM Sodium thiosulfate pentahydrate, 0.002 g/L 4-Aminobenzoic acid, UW concentrated base (0.02 g/L Nitrilotriacetic acid, 0.0289 g/L Magnesium sulfate, 0.00667 g/L Calcium chloride dihydrate, 1.85e-05 g/L ammonium molybdate tetrahydrate, 0.000698 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L EDTA, 0.001095 g/L Zinc sulfate heptahydrate, 0.000154 g/L Manganese (II) sulfate monohydrate, 3.92e-05 g/L Copper (II) sulfate pentahydrate, 2.5e-05 g/L Cobalt(II) nitrate hexahydrate, 1.77e-05 g/L sodium tetraborate decahydrate)

Specific Phenotypes

For 2 genes in this experiment

For carbon source Sebacic acid in Rhodopseudomonas palustris CGA009

For carbon source Sebacic acid across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 3
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
fatty acid β-oxidation I (generic) 7 5 5
oleate β-oxidation 35 28 24
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation II (plant peroxisome) 5 3 3
glutaryl-CoA degradation 5 3 3
2-methyl-branched fatty acid β-oxidation 14 10 8
valproate β-oxidation 9 5 5
pyruvate fermentation to hexanol (engineered) 11 7 6
fatty acid salvage 6 6 3
L-isoleucine degradation I 6 4 3
pyruvate fermentation to butanol II (engineered) 6 4 3
propanoate fermentation to 2-methylbutanoate 6 3 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 5
pyruvate fermentation to butanoate 7 4 3
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 3
adipate degradation 5 5 2
adipate biosynthesis 5 5 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 4
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to butanol I 8 3 3
ketolysis 3 3 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 3
polyhydroxybutanoate biosynthesis 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 3
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
3-phenylpropanoate degradation 10 4 3
L-glutamate degradation V (via hydroxyglutarate) 10 4 3
benzoyl-CoA degradation I (aerobic) 7 5 2
L-valine degradation I 8 6 2
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
L-glutamate degradation VII (to butanoate) 12 5 3
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 5 4
2-methylpropene degradation 8 2 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 4
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 3
benzoyl-CoA degradation III (anaerobic) 9 7 2
phenylacetate degradation I (aerobic) 9 5 2
toluene degradation VI (anaerobic) 18 5 4
superpathway of glyoxylate cycle and fatty acid degradation 14 12 3
ketogenesis 5 3 1
androstenedione degradation I (aerobic) 25 6 5
L-tryptophan degradation III (eukaryotic) 15 3 3
methyl tert-butyl ether degradation 10 2 2
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
pyruvate fermentation to acetone 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
glycerol degradation to butanol 16 9 3
superpathway of phenylethylamine degradation 11 6 2
superpathway of testosterone and androsterone degradation 28 6 5
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 3
3-hydroxypropanoate/4-hydroxybutanate cycle 18 12 3
4-ethylphenol degradation (anaerobic) 6 3 1
6-gingerol analog biosynthesis (engineered) 6 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 2
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 2
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 7
androstenedione degradation II (anaerobic) 27 4 4
acetyl-CoA fermentation to butanoate 7 4 1
benzoyl-CoA degradation II (anaerobic) 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
2-deoxy-D-ribose degradation II 8 2 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
platensimycin biosynthesis 26 6 3
1-butanol autotrophic biosynthesis (engineered) 27 21 3
4-oxopentanoate degradation 9 5 1
L-lysine fermentation to acetate and butanoate 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
gallate degradation III (anaerobic) 11 3 1
ethylmalonyl-CoA pathway 11 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 2
superpathway of cholesterol degradation III (oxidase) 49 5 4
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 2
sitosterol degradation to androstenedione 18 1 1
superpathway of ergosterol biosynthesis I 26 5 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 8 1
superpathway of cholesterol biosynthesis 38 5 1
superpathway of L-lysine degradation 43 13 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 19 1