Experiment set1S222 for Mycobacterium tuberculosis H37Rv

Compare to:

Sodium propionate carbon source

Group: carbon source
Media: Sautons minimal media with no carbon + Sodium propionate (10 mM)
Culturing: MycoTube_ML10, tube, Aerobic, at 37 (C)
Growth: about 4.1 generations
By: Kayla Dinshaw on 6/30/23
Media components: 0.8 g/L Sodium Chloride, 2.5 g/L Disodium phosphate, 1 g/L Potassium phosphate monobasic, 0.2 g/L L-Asparagine, 0.05 g/L Ferric ammonium citrate, 0.02 g/L Magnesium sulfate, 0.0005 g/L Calcium chloride, 1e-05 g/L Zinc sulfate heptahydrate, 0.2 vol% Ethanol, 0.05 vol% Tyloxapol

Specific Phenotypes

For 19 genes in this experiment

For carbon source Sodium propionate in Mycobacterium tuberculosis H37Rv

For carbon source Sodium propionate across organisms

SEED Subsystems

Subsystem #Specific
Respiratory Complex I 12
Ethanolamine utilization 2
Fermentations: Lactate 2
Fermentations: Mixed acid 2
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
Threonine anaerobic catabolism gene cluster 2
MLST 1
Methylcitrate cycle 1
Propanediol utilization 1
Propionate-CoA to Succinate Module 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA I 2 2 2
long-chain fatty acid activation 1 1 1
superpathway of acetate utilization and formation 3 3 2
pyruvate fermentation to acetate II 3 2 2
pyruvate fermentation to acetate IV 3 2 2
pyruvate fermentation to acetate VII 3 2 2
pyruvate fermentation to acetate I 3 2 2
γ-linolenate biosynthesis II (animals) 2 2 1
pyruvate fermentation to acetate and lactate II 4 2 2
pyruvate fermentation to acetate and (S)-lactate I 4 2 2
linoleate biosynthesis II (animals) 2 1 1
sulfoacetaldehyde degradation I 2 1 1
glycine degradation (reductive Stickland reaction) 2 1 1
NADH to cytochrome bd oxidase electron transfer I 2 1 1
NADH to cytochrome bo oxidase electron transfer I 2 1 1
(S)-propane-1,2-diol degradation 5 4 2
ethanolamine utilization 5 4 2
acetylene degradation (anaerobic) 5 4 2
L-threonine degradation I 6 5 2
oleate biosynthesis I (plants) 3 2 1
aerobic respiration III (alternative oxidase pathway) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
methanogenesis from acetate 6 2 2
alkane biosynthesis II 3 1 1
acetyl-CoA fermentation to butanoate 7 4 2
aerobic respiration I (cytochrome c) 4 3 1
phytol degradation 4 3 1
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 4 2
long chain fatty acid ester synthesis (engineered) 4 2 1
sulfolactate degradation II 4 1 1
phosphatidylcholine acyl editing 4 1 1
coenzyme B/coenzyme M regeneration I (methanophenazine-dependent) 4 1 1
wax esters biosynthesis II 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 2
superpathway of L-alanine fermentation (Stickland reaction) 9 3 2
sporopollenin precursors biosynthesis 18 4 4
2-methylcitrate cycle I 5 4 1
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
L-lysine fermentation to acetate and butanoate 10 4 2
gallate degradation III (anaerobic) 11 4 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
superpathway of taurine degradation 6 3 1
NAD(P)/NADPH interconversion 6 3 1
Fe(II) oxidation 6 2 1
superpathway of sulfolactate degradation 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 8 2
arachidonate biosynthesis III (6-desaturase, mammals) 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 2 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
mixed acid fermentation 16 13 2
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
superpathway of L-threonine metabolism 18 12 2
reductive glycine pathway of autotrophic CO2 fixation 9 4 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 16 2
suberin monomers biosynthesis 20 2 2
superpathway of methanogenesis 21 2 2
superpathway of fatty acid biosynthesis II (plant) 43 34 4
superpathway of N-acetylneuraminate degradation 22 16 2
purine nucleobases degradation II (anaerobic) 24 12 2
Bifidobacterium shunt 15 12 1
purine nucleobases degradation I (anaerobic) 15 6 1
palmitate biosynthesis II (type II fatty acid synthase) 31 24 2
cutin biosynthesis 16 1 1
heterolactic fermentation 18 13 1
superpathway of L-lysine degradation 43 10 2
superpathway of fatty acids biosynthesis (E. coli) 53 39 2
palmitate biosynthesis III 29 16 1
oleate β-oxidation 35 27 1