Experiment set1IT089 for Acidovorax sp. GW101-3H11

Compare to:

Sodium propionate carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Sodium propionate (20 mM), pH=7
Culturing: acidovorax_3H11_ML3a, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
By: Mark on 3/3/2015
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 10 genes in this experiment

For carbon source Sodium propionate in Acidovorax sp. GW101-3H11

For carbon source Sodium propionate across organisms

SEED Subsystems

Subsystem #Specific
Isoleucine degradation 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Entner-Doudoroff Pathway 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
Polyhydroxybutyrate metabolism 1
Valine degradation 1
cAMP signaling in bacteria 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate formation from acetyl-CoA (succinate) 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 5 4
pyruvate fermentation to butanol II (engineered) 6 5 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
oleate β-oxidation 35 29 16
pyruvate fermentation to hexanol (engineered) 11 7 5
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
glyoxylate cycle 6 6 2
pyruvate fermentation to acetate V 3 3 1
fatty acid salvage 6 5 2
propanoate fermentation to 2-methylbutanoate 6 5 2
L-isoleucine degradation I 6 5 2
TCA cycle VII (acetate-producers) 9 7 3
valproate β-oxidation 9 7 3
pyruvate fermentation to acetate VI 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 4
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
pyruvate fermentation to butanoate 7 3 2
partial TCA cycle (obligate autotrophs) 8 7 2
nitrogen remobilization from senescing leaves 8 6 2
L-valine degradation I 8 6 2
pyruvate fermentation to butanol I 8 4 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
TCA cycle V (2-oxoglutarate synthase) 9 8 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 8 2
TCA cycle II (plants and fungi) 9 7 2
TCA cycle VI (Helicobacter) 9 6 2
phenylacetate degradation I (aerobic) 9 5 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 2
2-methylcitrate cycle I 5 5 1
TCA cycle I (prokaryotic) 10 8 2
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
TCA cycle III (animals) 10 7 2
L-glutamate degradation V (via hydroxyglutarate) 10 6 2
3-phenylpropanoate degradation 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
glycerol degradation to butanol 16 10 3
reductive TCA cycle I 11 6 2
superpathway of phenylethylamine degradation 11 6 2
superpathway of glyoxylate bypass and TCA 12 10 2
2-methylcitrate cycle II 6 4 1
reductive TCA cycle II 12 6 2
6-gingerol analog biosynthesis (engineered) 6 3 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
1-butanol autotrophic biosynthesis (engineered) 27 19 4
succinate fermentation to butanoate 7 2 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 3
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 7 2
mixed acid fermentation 16 10 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
2-methylpropene degradation 8 2 1
ethene biosynthesis V (engineered) 25 17 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 5 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 3
Entner-Doudoroff pathway III (semi-phosphorylative) 9 6 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
toluene degradation VI (anaerobic) 18 4 2
benzoyl-CoA degradation III (anaerobic) 9 2 1
methylaspartate cycle 19 12 2
Rubisco shunt 10 8 1
glycolysis IV 10 8 1
glycolysis V (Pyrococcus) 10 7 1
anaerobic energy metabolism (invertebrates, mitochondrial) 10 7 1
photorespiration II 10 4 1
methyl tert-butyl ether degradation 10 2 1
glycolysis II (from fructose 6-phosphate) 11 11 1
glycolysis III (from glucose) 11 11 1
glycolysis VI (from fructose) 11 8 1
gallate degradation III (anaerobic) 11 4 1
homolactic fermentation 12 11 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
glycolysis I (from glucose 6-phosphate) 13 12 1
gluconeogenesis I 13 11 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 2
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
Bifidobacterium shunt 15 12 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
superpathway of glycolysis and the Entner-Doudoroff pathway 17 16 1
superpathway of anaerobic energy metabolism (invertebrates) 17 14 1
superpathway of glucose and xylose degradation 17 13 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of hexitol degradation (bacteria) 18 14 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 8 1
superpathway of anaerobic sucrose degradation 19 17 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of N-acetylneuraminate degradation 22 13 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 19 1