Culturing: acidovorax_3H11_ML3a, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Pathway | #Steps | #Present | #Specific |
acetate formation from acetyl-CoA (succinate) | 1 | 1 | 1 |
fatty acid β-oxidation III (unsaturated, odd number) | 1 | 1 | 1 |
benzoyl-CoA biosynthesis | 3 | 3 | 2 |
fatty acid β-oxidation IV (unsaturated, even number) | 5 | 3 | 3 |
fatty acid β-oxidation I (generic) | 7 | 5 | 4 |
pyruvate fermentation to butanol II (engineered) | 6 | 5 | 3 |
oleate β-oxidation (thioesterase-dependent, yeast) | 2 | 1 | 1 |
oleate β-oxidation | 35 | 29 | 16 |
pyruvate fermentation to hexanol (engineered) | 11 | 7 | 5 |
adipate degradation | 5 | 5 | 2 |
adipate biosynthesis | 5 | 4 | 2 |
fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 2 |
glutaryl-CoA degradation | 5 | 3 | 2 |
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) | 5 | 2 | 2 |
(8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 4 |
2-methyl-branched fatty acid β-oxidation | 14 | 10 | 5 |
glyoxylate cycle | 6 | 6 | 2 |
pyruvate fermentation to acetate V | 3 | 3 | 1 |
fatty acid salvage | 6 | 5 | 2 |
propanoate fermentation to 2-methylbutanoate | 6 | 5 | 2 |
L-isoleucine degradation I | 6 | 5 | 2 |
TCA cycle VII (acetate-producers) | 9 | 7 | 3 |
valproate β-oxidation | 9 | 7 | 3 |
pyruvate fermentation to acetate VI | 3 | 2 | 1 |
methyl ketone biosynthesis (engineered) | 6 | 3 | 2 |
oleate β-oxidation (reductase-dependent, yeast) | 3 | 1 | 1 |
benzoyl-CoA degradation I (aerobic) | 7 | 6 | 2 |
superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 4 |
fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 2 |
pyruvate fermentation to butanoate | 7 | 3 | 2 |
partial TCA cycle (obligate autotrophs) | 8 | 7 | 2 |
nitrogen remobilization from senescing leaves | 8 | 6 | 2 |
L-valine degradation I | 8 | 6 | 2 |
pyruvate fermentation to butanol I | 8 | 4 | 2 |
oleate β-oxidation (isomerase-dependent, yeast) | 4 | 1 | 1 |
TCA cycle V (2-oxoglutarate synthase) | 9 | 8 | 2 |
TCA cycle IV (2-oxoglutarate decarboxylase) | 9 | 8 | 2 |
TCA cycle II (plants and fungi) | 9 | 7 | 2 |
TCA cycle VI (Helicobacter) | 9 | 6 | 2 |
phenylacetate degradation I (aerobic) | 9 | 5 | 2 |
superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 4 | 2 |
benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 4 | 2 |
2-methylcitrate cycle I | 5 | 5 | 1 |
TCA cycle I (prokaryotic) | 10 | 8 | 2 |
4-hydroxybenzoate biosynthesis III (plants) | 5 | 4 | 1 |
TCA cycle III (animals) | 10 | 7 | 2 |
L-glutamate degradation V (via hydroxyglutarate) | 10 | 6 | 2 |
3-phenylpropanoate degradation | 10 | 6 | 2 |
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 3 | 1 |
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 1 | 1 |
glycerol degradation to butanol | 16 | 10 | 3 |
reductive TCA cycle I | 11 | 6 | 2 |
superpathway of phenylethylamine degradation | 11 | 6 | 2 |
superpathway of glyoxylate bypass and TCA | 12 | 10 | 2 |
2-methylcitrate cycle II | 6 | 4 | 1 |
reductive TCA cycle II | 12 | 6 | 2 |
6-gingerol analog biosynthesis (engineered) | 6 | 3 | 1 |
L-glutamate degradation VII (to butanoate) | 12 | 3 | 2 |
superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 6 | 2 |
1-butanol autotrophic biosynthesis (engineered) | 27 | 19 | 4 |
succinate fermentation to butanoate | 7 | 2 | 1 |
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle | 22 | 18 | 3 |
Spodoptera littoralis pheromone biosynthesis | 22 | 4 | 3 |
L-tryptophan degradation III (eukaryotic) | 15 | 7 | 2 |
mixed acid fermentation | 16 | 10 | 2 |
crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 4 | 2 |
2-methylpropene degradation | 8 | 2 | 1 |
ethene biosynthesis V (engineered) | 25 | 17 | 3 |
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 7 | 2 |
benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 5 | 2 |
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 23 | 3 |
Entner-Doudoroff pathway III (semi-phosphorylative) | 9 | 6 | 1 |
3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 10 | 2 |
toluene degradation VI (anaerobic) | 18 | 4 | 2 |
benzoyl-CoA degradation III (anaerobic) | 9 | 2 | 1 |
methylaspartate cycle | 19 | 12 | 2 |
Rubisco shunt | 10 | 8 | 1 |
glycolysis IV | 10 | 8 | 1 |
glycolysis V (Pyrococcus) | 10 | 7 | 1 |
anaerobic energy metabolism (invertebrates, mitochondrial) | 10 | 7 | 1 |
photorespiration II | 10 | 4 | 1 |
methyl tert-butyl ether degradation | 10 | 2 | 1 |
glycolysis II (from fructose 6-phosphate) | 11 | 11 | 1 |
glycolysis III (from glucose) | 11 | 11 | 1 |
glycolysis VI (from fructose) | 11 | 8 | 1 |
gallate degradation III (anaerobic) | 11 | 4 | 1 |
homolactic fermentation | 12 | 11 | 1 |
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
androstenedione degradation I (aerobic) | 25 | 6 | 2 |
glycolysis I (from glucose 6-phosphate) | 13 | 12 | 1 |
gluconeogenesis I | 13 | 11 | 1 |
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 17 | 2 |
platensimycin biosynthesis | 26 | 7 | 2 |
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
superpathway of testosterone and androsterone degradation | 28 | 6 | 2 |
superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 3 |
docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
Bifidobacterium shunt | 15 | 12 | 1 |
superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 8 | 3 |
superpathway of glycolysis and the Entner-Doudoroff pathway | 17 | 16 | 1 |
superpathway of anaerobic energy metabolism (invertebrates) | 17 | 14 | 1 |
superpathway of glucose and xylose degradation | 17 | 13 | 1 |
cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
superpathway of hexitol degradation (bacteria) | 18 | 14 | 1 |
gluconeogenesis II (Methanobacterium thermoautotrophicum) | 18 | 8 | 1 |
superpathway of anaerobic sucrose degradation | 19 | 17 | 1 |
hexitol fermentation to lactate, formate, ethanol and acetate | 19 | 14 | 1 |
superpathway of N-acetylneuraminate degradation | 22 | 13 | 1 |
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 2 | 1 |
superpathway of cholesterol degradation III (oxidase) | 49 | 4 | 2 |
Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 19 | 1 |