Experiment set1IT067 for Pseudomonas fluorescens FW300-N2E3

Compare to:

Sodium propionate carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Sodium propionate (20 mM), pH=7
Culturing: pseudo3_N2E3_ML2, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 5.8 generations
By: Jayashree on 4/28/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 31 genes in this experiment

For carbon source Sodium propionate in Pseudomonas fluorescens FW300-N2E3

For carbon source Sodium propionate across organisms

SEED Subsystems

Subsystem #Specific
Beta-Glucoside Metabolism 1
Branched-Chain Amino Acid Biosynthesis 1
Campylobacter Iron Metabolism 1
Fermentations: Mixed acid 1
Peptidoglycan Biosynthesis 1
Polyamine Metabolism 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Rhamnose containing glycans 1
Teichoic and lipoteichoic acids biosynthesis 1
Twin-arginine translocation system 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
neolinustatin bioactivation 3 2 2
L-methionine degradation II 3 2 2
CO2 fixation into oxaloacetate (anaplerotic) 2 2 1
L-threonine degradation I 6 4 3
linustatin bioactivation 4 2 2
L-threonine degradation V 2 1 1
lotaustralin degradation 2 1 1
linamarin degradation 2 1 1
L-isoleucine biosynthesis I (from threonine) 7 7 3
cellulose degradation II (fungi) 3 1 1
superpathway of L-isoleucine biosynthesis I 13 13 3
hypoglycin biosynthesis 14 4 3
coumarin biosynthesis (via 2-coumarate) 5 2 1
superpathway of branched chain amino acid biosynthesis 17 17 3
superpathway of L-threonine metabolism 18 12 3
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 2
α-tomatine degradation 6 1 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 1
partial TCA cycle (obligate autotrophs) 8 8 1
nitrogen remobilization from senescing leaves 8 6 1
Escherichia coli serotype O:8 O antigen biosynthesis 9 2 1
peptidoglycan recycling II 10 8 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 1
formaldehyde assimilation I (serine pathway) 13 6 1
peptidoglycan recycling I 14 11 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 1
firefly bioluminescence 14 2 1
cyclosporin A biosynthesis 15 2 1
mixed acid fermentation 16 12 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
ethene biosynthesis V (engineered) 25 19 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1