Experiment set1IT052 for Rhodanobacter denitrificans FW104-10B01

Compare to:

R2A with Nickel (II) chloride hexahydrate 0.3125 mM

Group: stress
Media: R2A + Nickel (II) chloride hexahydrate (0.3125 mM)
Culturing: rhodanobacter_10B01_ML12, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
By: Trenton on 1/24/21
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate

Specific Phenotypes

For 35 genes in this experiment

For stress Nickel (II) chloride hexahydrate in Rhodanobacter denitrificans FW104-10B01

For stress Nickel (II) chloride hexahydrate across organisms

SEED Subsystems

Subsystem #Specific
Ammonia assimilation 1
Biotin biosynthesis 1
Branched-Chain Amino Acid Biosynthesis 1
Calvin-Benson cycle 1
Cobalt-zinc-cadmium resistance 1
D-ribose utilization 1
Deoxyribose and Deoxynucleoside Catabolism 1
Entner-Doudoroff Pathway 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycine and Serine Utilization 1
Glycine cleavage system 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
Leucine Degradation and HMG-CoA Metabolism 1
Na(+)-translocating NADH-quinone oxidoreductase and rnf-like group of electron transport complexes 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Orphan regulatory proteins 1
Pentose phosphate pathway 1
Photorespiration (oxidative C2 cycle) 1
Protein chaperones 1
Proteolysis in bacteria, ATP-dependent 1
Ribosomal protein S12p Asp methylthiotransferase 1
Terminal cytochrome C oxidases 1
Threonine and Homoserine Biosynthesis 1
Trehalose Uptake and Utilization 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
long-chain fatty acid activation 1 1 1
L-aspartate degradation I 1 1 1
malate/L-aspartate shuttle pathway 2 2 1
L-glutamate degradation II 2 1 1
linoleate biosynthesis II (animals) 2 1 1
atromentin biosynthesis 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
arsenite to oxygen electron transfer 2 1 1
L-tyrosine degradation II 2 1 1
ribose phosphorylation 2 1 1
L-asparagine degradation III (mammalian) 3 3 1
L-phenylalanine biosynthesis I 3 3 1
glycine cleavage 3 3 1
glycine degradation 3 3 1
pentose phosphate pathway (oxidative branch) I 3 3 1
L-tyrosine biosynthesis I 3 3 1
glycine biosynthesis II 3 3 1
2-deoxy-D-ribose degradation I 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
alkane biosynthesis II 3 1 1
(R)-cysteate degradation 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
L-phenylalanine degradation II (anaerobic) 3 1 1
sulfolactate degradation III 3 1 1
oleate biosynthesis I (plants) 3 1 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
phytol degradation 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
phosphatidylcholine acyl editing 4 2 1
wax esters biosynthesis II 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
L-tyrosine degradation I 5 4 1
trans-4-hydroxy-L-proline degradation I 5 3 1
cytosolic NADPH production (yeast) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 2
tRNA-uridine 2-thiolation and selenation (bacteria) 11 3 2
superpathway of L-threonine biosynthesis 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
TCA cycle VIII (Chlamydia) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
formaldehyde oxidation I 6 3 1
Fe(II) oxidation 6 2 1
superpathway of sulfolactate degradation 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
coenzyme M biosynthesis II 6 1 1
anaerobic energy metabolism (invertebrates, cytosol) 7 7 1
L-lysine biosynthesis VI 7 6 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
pentose phosphate pathway 8 8 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 16 2
superpathway of aromatic amino acid biosynthesis 18 18 2
folate transformations III (E. coli) 9 9 1
L-lysine biosynthesis I 9 9 1
Entner-Doudoroff pathway I 9 9 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 2
sucrose biosynthesis I (from photosynthesis) 9 7 1
L-lysine biosynthesis II 9 7 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
photorespiration III 9 5 1
photorespiration I 9 5 1
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 2 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
photorespiration II 10 5 1
suberin monomers biosynthesis 20 2 2
rosmarinic acid biosynthesis I 10 1 1
superpathway of fatty acid biosynthesis II (plant) 43 38 4
glycolysis II (from fructose 6-phosphate) 11 11 1
folate transformations II (plants) 11 10 1
(S)-reticuline biosynthesis I 11 1 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 11 1
gluconeogenesis III 12 10 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
indole-3-acetate biosynthesis II 12 3 1
aspartate superpathway 25 23 2
superpathway of L-isoleucine biosynthesis I 13 13 1
glycolysis I (from glucose 6-phosphate) 13 12 1
gluconeogenesis I 13 11 1
Calvin-Benson-Bassham cycle 13 9 1
folate transformations I 13 8 1
superpathway of rosmarinic acid biosynthesis 14 1 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of glucose and xylose degradation 17 14 1
superpathway of anaerobic energy metabolism (invertebrates) 17 13 1
oxygenic photosynthesis 17 10 1
heterolactic fermentation 18 15 1
superpathway of hexitol degradation (bacteria) 18 14 1
superpathway of anaerobic sucrose degradation 19 16 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of N-acetylneuraminate degradation 22 16 1
ethene biosynthesis V (engineered) 25 17 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
1-butanol autotrophic biosynthesis (engineered) 27 18 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 1 1
palmitate biosynthesis III 29 21 1
superpathway of chorismate metabolism 59 40 2
oleate β-oxidation 35 32 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 25 1