Culturing: rhodanobacter_10B01_ML12, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
Pathway | #Steps | #Present | #Specific |
L-aspartate biosynthesis | 1 | 1 | 1 |
3-(4-hydroxyphenyl)pyruvate biosynthesis | 1 | 1 | 1 |
long-chain fatty acid activation | 1 | 1 | 1 |
L-aspartate degradation I | 1 | 1 | 1 |
malate/L-aspartate shuttle pathway | 2 | 2 | 1 |
L-glutamate degradation II | 2 | 1 | 1 |
linoleate biosynthesis II (animals) | 2 | 1 | 1 |
atromentin biosynthesis | 2 | 1 | 1 |
L-tryptophan degradation IV (via indole-3-lactate) | 2 | 1 | 1 |
γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
arsenite to oxygen electron transfer | 2 | 1 | 1 |
L-tyrosine degradation II | 2 | 1 | 1 |
ribose phosphorylation | 2 | 1 | 1 |
L-asparagine degradation III (mammalian) | 3 | 3 | 1 |
L-phenylalanine biosynthesis I | 3 | 3 | 1 |
glycine cleavage | 3 | 3 | 1 |
glycine degradation | 3 | 3 | 1 |
pentose phosphate pathway (oxidative branch) I | 3 | 3 | 1 |
L-tyrosine biosynthesis I | 3 | 3 | 1 |
glycine biosynthesis II | 3 | 3 | 1 |
2-deoxy-D-ribose degradation I | 3 | 2 | 1 |
3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
L-tyrosine degradation IV (to 4-methylphenol) | 3 | 1 | 1 |
alkane biosynthesis II | 3 | 1 | 1 |
(R)-cysteate degradation | 3 | 1 | 1 |
indole-3-acetate biosynthesis VI (bacteria) | 3 | 1 | 1 |
L-phenylalanine degradation II (anaerobic) | 3 | 1 | 1 |
sulfolactate degradation III | 3 | 1 | 1 |
oleate biosynthesis I (plants) | 3 | 1 | 1 |
arsenite to oxygen electron transfer (via azurin) | 3 | 1 | 1 |
phytol degradation | 4 | 3 | 1 |
superpathway of L-aspartate and L-asparagine biosynthesis | 4 | 3 | 1 |
aerobic respiration I (cytochrome c) | 4 | 3 | 1 |
L-tyrosine degradation III | 4 | 2 | 1 |
L-phenylalanine degradation III | 4 | 2 | 1 |
aerobic respiration II (cytochrome c) (yeast) | 4 | 2 | 1 |
phosphatidylcholine acyl editing | 4 | 2 | 1 |
wax esters biosynthesis II | 4 | 1 | 1 |
L-tryptophan degradation VIII (to tryptophol) | 4 | 1 | 1 |
long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
sporopollenin precursors biosynthesis | 18 | 4 | 4 |
L-tyrosine degradation I | 5 | 4 | 1 |
trans-4-hydroxy-L-proline degradation I | 5 | 3 | 1 |
cytosolic NADPH production (yeast) | 5 | 3 | 1 |
sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
octane oxidation | 5 | 2 | 1 |
superpathway of plastoquinol biosynthesis | 5 | 2 | 1 |
L-tyrosine degradation V (reductive Stickland reaction) | 5 | 1 | 1 |
L-tryptophan degradation XIII (reductive Stickland reaction) | 5 | 1 | 1 |
L-phenylalanine degradation VI (reductive Stickland reaction) | 5 | 1 | 1 |
4-hydroxybenzoate biosynthesis I (eukaryotes) | 5 | 1 | 1 |
C4 photosynthetic carbon assimilation cycle, NAD-ME type | 11 | 7 | 2 |
tRNA-uridine 2-thiolation and selenation (bacteria) | 11 | 3 | 2 |
superpathway of L-threonine biosynthesis | 6 | 6 | 1 |
stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
TCA cycle VIII (Chlamydia) | 6 | 5 | 1 |
fatty acid salvage | 6 | 5 | 1 |
stearate biosynthesis IV | 6 | 4 | 1 |
formaldehyde oxidation I | 6 | 3 | 1 |
Fe(II) oxidation | 6 | 2 | 1 |
superpathway of sulfolactate degradation | 6 | 2 | 1 |
6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
stearate biosynthesis I (animals) | 6 | 1 | 1 |
coenzyme M biosynthesis II | 6 | 1 | 1 |
anaerobic energy metabolism (invertebrates, cytosol) | 7 | 7 | 1 |
L-lysine biosynthesis VI | 7 | 6 | 1 |
C4 photosynthetic carbon assimilation cycle, PEPCK type | 14 | 8 | 2 |
ceramide degradation by α-oxidation | 7 | 2 | 1 |
arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
capsaicin biosynthesis | 7 | 1 | 1 |
icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
pentose phosphate pathway | 8 | 8 | 1 |
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) | 8 | 4 | 1 |
ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
2-deoxy-D-ribose degradation II | 8 | 2 | 1 |
superpathway of glycolysis and the Entner-Doudoroff pathway | 17 | 16 | 2 |
superpathway of aromatic amino acid biosynthesis | 18 | 18 | 2 |
folate transformations III (E. coli) | 9 | 9 | 1 |
L-lysine biosynthesis I | 9 | 9 | 1 |
Entner-Doudoroff pathway I | 9 | 9 | 1 |
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I | 18 | 16 | 2 |
sucrose biosynthesis I (from photosynthesis) | 9 | 7 | 1 |
L-lysine biosynthesis II | 9 | 7 | 1 |
superpathway of L-methionine biosynthesis (transsulfuration) | 9 | 7 | 1 |
photorespiration III | 9 | 5 | 1 |
photorespiration I | 9 | 5 | 1 |
reductive glycine pathway of autotrophic CO2 fixation | 9 | 5 | 1 |
L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 2 | 1 |
superpathway of L-phenylalanine biosynthesis | 10 | 10 | 1 |
superpathway of L-tyrosine biosynthesis | 10 | 10 | 1 |
photorespiration II | 10 | 5 | 1 |
suberin monomers biosynthesis | 20 | 2 | 2 |
rosmarinic acid biosynthesis I | 10 | 1 | 1 |
superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 4 |
glycolysis II (from fructose 6-phosphate) | 11 | 11 | 1 |
folate transformations II (plants) | 11 | 10 | 1 |
(S)-reticuline biosynthesis I | 11 | 1 | 1 |
superpathway of L-methionine biosynthesis (by sulfhydrylation) | 12 | 11 | 1 |
gluconeogenesis III | 12 | 10 | 1 |
formaldehyde assimilation III (dihydroxyacetone cycle) | 12 | 10 | 1 |
indole-3-acetate biosynthesis II | 12 | 3 | 1 |
aspartate superpathway | 25 | 23 | 2 |
superpathway of L-isoleucine biosynthesis I | 13 | 13 | 1 |
glycolysis I (from glucose 6-phosphate) | 13 | 12 | 1 |
gluconeogenesis I | 13 | 11 | 1 |
Calvin-Benson-Bassham cycle | 13 | 9 | 1 |
folate transformations I | 13 | 8 | 1 |
superpathway of rosmarinic acid biosynthesis | 14 | 1 | 1 |
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II | 15 | 13 | 1 |
palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
cutin biosynthesis | 16 | 1 | 1 |
superpathway of glucose and xylose degradation | 17 | 14 | 1 |
superpathway of anaerobic energy metabolism (invertebrates) | 17 | 13 | 1 |
oxygenic photosynthesis | 17 | 10 | 1 |
heterolactic fermentation | 18 | 15 | 1 |
superpathway of hexitol degradation (bacteria) | 18 | 14 | 1 |
superpathway of anaerobic sucrose degradation | 19 | 16 | 1 |
hexitol fermentation to lactate, formate, ethanol and acetate | 19 | 14 | 1 |
superpathway of N-acetylneuraminate degradation | 22 | 16 | 1 |
ethene biosynthesis V (engineered) | 25 | 17 | 1 |
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 23 | 1 |
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 17 | 1 |
superpathway of fatty acids biosynthesis (E. coli) | 53 | 49 | 2 |
1-butanol autotrophic biosynthesis (engineered) | 27 | 18 | 1 |
anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 1 | 1 |
palmitate biosynthesis III | 29 | 21 | 1 |
superpathway of chorismate metabolism | 59 | 40 | 2 |
oleate β-oxidation | 35 | 32 | 1 |
Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 25 | 1 |