Experiment set1IT021 for Burkholderia phytofirmans PsJN

Compare to:

L-Glutamine carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Glutamine (20 mM), pH=7
Culturing: BFirm_ML3, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Growth: about 5.4 generations
By: Mark on 6/2/2015
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 16 genes in this experiment

For carbon source L-Glutamine in Burkholderia phytofirmans PsJN

For carbon source L-Glutamine across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 5
Methionine Biosynthesis 2
Arginine and Ornithine Degradation 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Proline, 4-hydroxyproline uptake and utilization 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Respiratory dehydrogenases 1 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-malate degradation I 1 1 1
L-proline degradation I 3 3 2
urea degradation I 3 3 2
proline to cytochrome bo oxidase electron transfer 2 2 1
cyanuric acid degradation II 5 4 2
cyanuric acid degradation I 5 2 2
L-citrulline degradation 3 3 1
cyanate degradation 3 3 1
cardiolipin biosynthesis II 3 3 1
superpathway of allantoin degradation in yeast 6 5 2
L-methionine salvage from L-homocysteine 3 1 1
L-arginine degradation I (arginase pathway) 3 1 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 2
L-arginine degradation V (arginine deiminase pathway) 4 4 1
L-methionine biosynthesis III 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
superpathway of atrazine degradation 8 4 2
ethene biosynthesis II (microbes) 4 1 1
L-methionine biosynthesis I 5 3 1
uracil degradation III 5 3 1
methylgallate degradation 6 4 1
(5R)-carbapenem carboxylate biosynthesis 6 1 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
L-Nδ-acetylornithine biosynthesis 7 4 1
L-citrulline biosynthesis 8 6 1
superpathway of L-homoserine and L-methionine biosynthesis 8 6 1
protocatechuate degradation I (meta-cleavage pathway) 8 5 1
folate transformations III (E. coli) 9 8 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
superpathway of S-adenosyl-L-methionine biosynthesis 9 7 1
allantoin degradation IV (anaerobic) 9 2 1
superpathway of vanillin and vanillate degradation 10 6 1
folate transformations II (plants) 11 9 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
superpathway of L-citrulline metabolism 12 8 1
syringate degradation 12 5 1
gluconeogenesis I 13 11 1
superpathway of cardiolipin biosynthesis (bacteria) 13 9 1
folate transformations I 13 8 1
superpathway of L-methionine salvage and degradation 16 7 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
aspartate superpathway 25 23 1