Experiment set1IT020 for Sinorhizobium meliloti 1021

Compare to:

Glycerol carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Glycerol (20 mM), pH=7
Culturing: Smeli_ML6, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Growth: about 4.9 generations
By: Mark on 6/2/2015
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Growth plate: Smeli_carbon_plate1 D4

Specific Phenotypes

For 3 genes in this experiment

For carbon source Glycerol in Sinorhizobium meliloti 1021

For carbon source Glycerol across organisms

SEED Subsystems

Subsystem #Specific
MLST 2
Calvin-Benson cycle 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glycerol degradation I 3 2 1
glycerol and glycerophosphodiester degradation 4 3 1
sucrose degradation V (sucrose α-glucosidase) 5 2 1
glycolysis IV 10 8 1
glycolysis V (Pyrococcus) 10 6 1
glycolysis III (from glucose) 11 10 1
glycolysis II (from fructose 6-phosphate) 11 9 1
glycolysis VI (from fructose) 11 7 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 11 1
homolactic fermentation 12 10 1
gluconeogenesis III 12 9 1
Calvin-Benson-Bassham cycle 13 12 1
gluconeogenesis I 13 12 1
glycolysis I (from glucose 6-phosphate) 13 10 1
glycerol degradation to butanol 16 12 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
oxygenic photosynthesis 17 13 1
superpathway of hexitol degradation (bacteria) 18 13 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 7 1
superpathway of anaerobic sucrose degradation 19 14 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 12 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 19 1
superpathway of N-acetylneuraminate degradation 22 16 1
ethene biosynthesis V (engineered) 25 19 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 22 1
1-butanol autotrophic biosynthesis (engineered) 27 21 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1