Experiment set1IT011 for Pedobacter sp. GW460-11-11-14-LB5

Compare to:

R2A with Paraquat dichloride 0.003 mg/ml

Group: stress
Media: R2A + Paraquat dichloride (0.003 mg/ml)
Culturing: Pedo557_ML3, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
Growth: about 4.5 generations
By: Adam on 17-May-17
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate
Growth plate: 1753 C2

Specific Phenotypes

For 46 genes in this experiment

For stress Paraquat dichloride in Pedobacter sp. GW460-11-11-14-LB5

For stress Paraquat dichloride across organisms

SEED Subsystems

Subsystem #Specific
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Phosphate metabolism 2
Predicted carbohydrate hydrolases 2
Biogenesis of c-type cytochromes 1
Conjugative transposon, Bacteroidales 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine reductase, sarcosine reductase and betaine reductase 1
Glycolate, glyoxylate interconversions 1
LMPTP YfkJ cluster 1
Periplasmic disulfide interchange 1
Photorespiration (oxidative C2 cycle) 1
Polysaccharide deacetylases 1
Thiamin biosynthesis 1
Transport of Zinc 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-asparagine degradation I 1 1 1
cis-cyclopropane fatty acid (CFA) biosynthesis 1 1 1
pyrimidine ribonucleosides salvage I 3 3 2
thiamine diphosphate biosynthesis I (E. coli) 2 2 1
polyphosphate metabolism 2 2 1
thiamine diphosphate biosynthesis II (Bacillus) 2 2 1
γ-linolenate biosynthesis II (animals) 2 2 1
sterculate biosynthesis 2 1 1
palmitoleate biosynthesis III (cyanobacteria) 2 1 1
oleate biosynthesis II (animals and fungi) 2 1 1
palmitoleate biosynthesis IV (fungi and animals) 2 1 1
phospholipid remodeling (phosphatidate, yeast) 2 1 1
proline to cytochrome bo oxidase electron transfer 2 1 1
glycolate and glyoxylate degradation II 2 1 1
linoleate biosynthesis II (animals) 2 1 1
ephedrine biosynthesis 10 4 4
L-asparagine degradation III (mammalian) 3 3 1
L-proline degradation I 3 3 1
fatty acid biosynthesis initiation (type II) 3 3 1
thiamine diphosphate salvage V 3 2 1
oleate biosynthesis III (cyanobacteria) 3 2 1
oleate biosynthesis I (plants) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
glycolate and glyoxylate degradation III 3 1 1
thiamine diphosphate biosynthesis III (Staphylococcus) 3 1 1
thiamine diphosphate biosynthesis IV (eukaryotes) 3 1 1
alkane biosynthesis II 3 1 1
CDP-diacylglycerol biosynthesis I 4 4 1
CDP-diacylglycerol biosynthesis II 4 4 1
phytol degradation 4 3 1
glycolate and glyoxylate degradation I 4 2 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
superpathway of pyrimidine ribonucleosides salvage 10 9 2
superpathway of fatty acid biosynthesis initiation 5 4 1
thiamine diphosphate salvage II 5 4 1
phosphatidate biosynthesis (yeast) 5 3 1
CDP-diacylglycerol biosynthesis III 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
N-(1-deoxy-D-fructos-1-yl)-L-asparagine degradation 5 2 1
octane oxidation 5 2 1
cis-zeatin biosynthesis 5 1 1
phosphatidylglycerol biosynthesis I 6 6 1
ppGpp metabolism 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
cyanophycin metabolism 6 6 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 2
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
fatty acid salvage 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of stearidonate biosynthesis (cyanobacteria) 6 2 1
palmitoyl ethanolamide biosynthesis 6 2 1
stearate biosynthesis I (animals) 6 1 1
(5R)-carbapenem carboxylate biosynthesis 6 1 1
thiamine diphosphate salvage IV (yeast) 7 4 1
L-Nδ-acetylornithine biosynthesis 7 4 1
superpathway of thiamine diphosphate biosynthesis III (eukaryotes) 7 3 1
superpathway of glycol metabolism and degradation 7 3 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 2 1
stigma estolide biosynthesis 7 2 1
diacylglycerol and triacylglycerol biosynthesis 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 2 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
L-citrulline biosynthesis 8 6 1
thiamine diphosphate formation from pyrithiamine and oxythiamine (yeast) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
sorgoleone biosynthesis 8 2 1
anandamide biosynthesis II 8 2 1
superpathway of fatty acid biosynthesis II (plant) 43 39 5
photorespiration I 9 5 1
photorespiration III 9 5 1
superpathway of thiamine diphosphate biosynthesis I 10 9 1
photorespiration II 10 5 1
nucleoside and nucleotide degradation (archaea) 10 4 1
peptidoglycan recycling II 10 3 1
suberin monomers biosynthesis 20 2 2
superpathway of thiamine diphosphate biosynthesis II 11 9 1
superpathway of L-citrulline metabolism 12 8 1
anandamide biosynthesis I 12 3 1
superpathway of cardiolipin biosynthesis (bacteria) 13 8 1
peptidoglycan recycling I 14 8 1
superpathway of phospholipid biosynthesis II (plants) 28 10 2
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
superpathway of fatty acid biosynthesis I (E. coli) 16 14 1
plasmalogen biosynthesis I (aerobic) 16 2 1
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 48 3
palmitate biosynthesis III 29 21 1
streptorubin B biosynthesis 34 20 1
oleate β-oxidation 35 23 1
mycolate biosynthesis 205 26 3
superpathway of mycolate biosynthesis 239 27 3