Experiment set1H20 for Shewanella sp. ANA-3

Compare to:

Sodium propionate carbon source

Group: carbon source
Media: ShewMM_noCarbon + Sodium propionate (20 mM), pH=7
Culturing: ANA3_ML1, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.4 generations
By: Jake on 2/12/2014
Media components: 1.5 g/L Ammonium chloride, 1.75 g/L Sodium Chloride, 0.61 g/L Magnesium chloride hexahydrate, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 16 genes in this experiment

For carbon source Sodium propionate in Shewanella sp. ANA-3

For carbon source Sodium propionate across organisms

SEED Subsystems

Subsystem #Specific
CO2 uptake, carboxysome 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Hemin transport system 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Purine Utilization 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Restriction-Modification System 1
Ton and Tol transport systems 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
L-glutamine biosynthesis I 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 4 3
fatty acid β-oxidation I (generic) 7 6 4
ammonia assimilation cycle II 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
ammonia assimilation cycle I 2 2 1
putrescine degradation V 2 1 1
putrescine degradation I 2 1 1
oleate β-oxidation 35 32 16
adipate degradation 5 4 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
adipate biosynthesis 5 3 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 9 5
fatty acid salvage 6 6 2
superpathway of ammonia assimilation (plants) 3 3 1
ammonia assimilation cycle III 3 3 1
pyruvate fermentation to butanol II (engineered) 6 5 2
L-isoleucine degradation I 6 4 2
L-aspartate degradation III (anaerobic) 3 2 1
oleate β-oxidation (reductase-dependent, yeast) 3 2 1
putrescine degradation IV 3 2 1
valproate β-oxidation 9 5 3
methyl ketone biosynthesis (engineered) 6 3 2
propanoate fermentation to 2-methylbutanoate 6 3 2
L-aspartate degradation II (aerobic) 3 1 1
pyruvate fermentation to butanoate 7 3 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
L-valine degradation I 8 6 2
superpathway of ornithine degradation 8 6 2
putrescine degradation II 4 3 1
pyruvate fermentation to butanol I 8 4 2
L-arginine degradation IX (arginine:pyruvate transaminase pathway) 4 1 1
L-arginine degradation VIII (arginine oxidase pathway) 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 2 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
3-phenylpropanoate degradation 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 6 2
superpathway of phenylethylamine degradation 11 3 2
L-glutamate degradation VII (to butanoate) 12 4 2
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of L-arginine and L-ornithine degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
L-glutamate and L-glutamine biosynthesis 7 6 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 4 2
glycerol degradation to butanol 16 10 2
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 7 2
toluene degradation VI (anaerobic) 18 3 2
L-arginine biosynthesis II (acetyl cycle) 10 9 1
methyl tert-butyl ether degradation 10 2 1
tRNA-uridine 2-thiolation and selenation (bacteria) 11 6 1
gallate degradation III (anaerobic) 11 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 3 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 21 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1