Experiment set1H11 for Shewanella oneidensis MR-1

Compare to:

LB with Paraquat dichloride 0.5 mg/ml

Group: stress
Media: LB + Paraquat dichloride (0.5 mg/ml)
Culturing: MR1_ML3, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
By: Adam on 8/18/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 647 D5,D6

Specific Phenotypes

For 24 genes in this experiment

For stress Paraquat dichloride in Shewanella oneidensis MR-1

For stress Paraquat dichloride across organisms

SEED Subsystems

Subsystem #Specific
Isobutyryl-CoA to Propionyl-CoA Module 2
Isoleucine degradation 2
Phosphate metabolism 2
Acid resistance mechanisms 1
Arginine and Ornithine Degradation 1
Carboxysome 1
Coenzyme B12 biosynthesis 1
Dissimilatory nitrite reductase 1
Experimental tye 1
Formate hydrogenase 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Heme and Siroheme Biosynthesis 1
High affinity phosphate transporter and control of PHO regulon 1
Leucine Degradation and HMG-CoA Metabolism 1
Mannose-sensitive hemagglutinin type 4 pilus 1
Oxidative stress 1
Photorespiration (oxidative C2 cycle) 1
Polyamine Metabolism 1
Respiratory dehydrogenases 1 1
Thioredoxin-disulfide reductase 1
Valine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
arginine dependent acid resistance 1 1 1
siroheme biosynthesis 4 4 3
phosphatidylserine and phosphatidylethanolamine biosynthesis I 2 2 1
NADH to cytochrome bd oxidase electron transfer II 2 2 1
NADH to cytochrome bd oxidase electron transfer I 2 2 1
superoxide radicals degradation 2 2 1
putrescine biosynthesis I 2 1 1
NADH to cytochrome bo oxidase electron transfer I 2 1 1
NADH to cytochrome aa3 oxidase electron transfer 2 1 1
NADH to cytochrome bo oxidase electron transfer II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
L-arginine degradation III (arginine decarboxylase/agmatinase pathway) 2 1 1
NADH to nitrate electron transfer 2 1 1
nitrate reduction VIIIb (dissimilatory) 2 1 1
factor 430 biosynthesis 7 3 3
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
ethanol degradation IV 3 3 1
benzoyl-CoA biosynthesis 3 3 1
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 3 1
putrescine biosynthesis II 3 3 1
L-isoleucine degradation I 6 5 2
valproate β-oxidation 9 6 3
propanoate fermentation to 2-methylbutanoate 6 4 2
ketolysis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
aerobic respiration III (alternative oxidase pathway) 3 2 1
2-methyl-branched fatty acid β-oxidation 14 11 4
reactive oxygen species degradation 4 4 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
spermidine biosynthesis III 4 2 1
superpathway of putrescine biosynthesis 4 2 1
oleate β-oxidation 35 32 8
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
mitochondrial NADPH production (yeast) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
ketogenesis 5 2 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) 15 3 3
pyruvate fermentation to acetone 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 5 1
NAD(P)/NADPH interconversion 6 3 1
Fe(II) oxidation 6 3 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
jasmonic acid biosynthesis 19 4 3
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) 13 2 2
fatty acid β-oxidation I (generic) 7 6 1
acetyl-CoA fermentation to butanoate 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
pyruvate fermentation to butanoate 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
L-valine degradation I 8 7 1
superpathway of polyamine biosynthesis II 8 6 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 5 1
pyruvate fermentation to butanol I 8 4 1
superpathway of polyamine biosynthesis I 8 4 1
2-deoxy-D-ribose degradation II 8 4 1
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
superpathway of phospholipid biosynthesis III (E. coli) 12 10 1
adenosylcobalamin biosynthesis I (anaerobic) 36 18 3
L-glutamate degradation VII (to butanoate) 12 4 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
superpathway of L-arginine and L-ornithine degradation 13 8 1
superpathway of cardiolipin biosynthesis (bacteria) 13 8 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
adenosylcobalamin biosynthesis II (aerobic) 33 19 2
superpathway of arginine and polyamine biosynthesis 17 13 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 7 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 21 1
superpathway of phospholipid biosynthesis II (plants) 28 10 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 8 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 22 1