Experiment set19S44 for Bifidobacterium breve UCC2003

Compare to:

cage3; mouse2; day5; diet=PolysaccharideDeficient; sample=FecalPellet; coculture=Btheta_VPI5482; stagger=24hrs

Group: mouse preculture
Media: + diet=PolysaccharideDeficient; sample=FecalPellet; coculture=Btheta_VPI5482; stagger=24hrs
Culturing: Bifido_ML2
By: Anthony Shiver on 4/3/2024

Specific Phenotypes

For 6 genes in this experiment

For mouse preculture diet=PolysaccharideDeficient; sample=FecalPellet; coculture=Btheta_VPI5482; stagger=24hrs in Bifidobacterium breve UCC2003

For mouse preculture diet=PolysaccharideDeficient; sample=FecalPellet; coculture=Btheta_VPI5482; stagger=24hrs across organisms

SEED Subsystems

Subsystem #Specific
Biotin biosynthesis 1
Sialic Acid Metabolism 1
Thiamin biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
hydroxymethylpyrimidine salvage 2 2 2
long-chain fatty acid activation 1 1 1
thiamine diphosphate salvage II 5 4 3
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis I 2 2 1
trehalose degradation I (low osmolarity) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
trehalose degradation II (cytosolic) 2 1 1
thiamine diphosphate salvage IV (yeast) 7 6 3
thiamine diphosphate formation from pyrithiamine and oxythiamine (yeast) 8 5 3
trehalose degradation IV 3 3 1
GDP-α-D-glucose biosynthesis 3 2 1
thiamine diphosphate salvage V 3 2 1
trehalose degradation V 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
sucrose degradation III (sucrose invertase) 4 4 1
phytol degradation 4 3 1
N-acetylneuraminate and N-acetylmannosamine degradation I 4 2 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
glucose and glucose-1-phosphate degradation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
CMP-N-acetylneuraminate biosynthesis I (eukaryotes) 5 2 1
octane oxidation 5 2 1
UDP-N-acetyl-D-glucosamine biosynthesis II 6 4 1
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation 6 4 1
stearate biosynthesis II (bacteria and plants) 6 4 1
glycogen degradation II 6 4 1
stearate biosynthesis IV 6 3 1
6-gingerol analog biosynthesis (engineered) 6 1 1
stearate biosynthesis I (animals) 6 1 1
fatty acid salvage 6 1 1
UDP-N-acetyl-D-galactosamine biosynthesis II 7 5 1
superpathway of thiamine diphosphate biosynthesis III (eukaryotes) 7 4 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
glycogen degradation I 8 7 1
sucrose biosynthesis II 8 6 1
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
chitin biosynthesis 9 5 1
1,3-propanediol biosynthesis (engineered) 9 4 1
superpathway of thiamine diphosphate biosynthesis I 10 6 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 29 4
glycolysis III (from glucose) 11 10 1
superpathway of thiamine diphosphate biosynthesis II 11 7 1
homolactic fermentation 12 11 1
Bifidobacterium shunt 15 15 1
superpathway of CMP-sialic acids biosynthesis 15 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 22 2
cutin biosynthesis 16 1 1
heterolactic fermentation 18 16 1
superpathway of N-acetylneuraminate degradation 22 17 1
superpathway of fatty acids biosynthesis (E. coli) 53 35 2
palmitate biosynthesis III 29 14 1
oleate β-oxidation 35 1 1