Experiment set19IT023 for Pseudomonas fluorescens SBW25-INTG

Compare to:

L-Glutamine (C)(N); with MOPS; with Sodium chloride

Group: stress
Media: MME_noNitrogen_noCarbon + L-Glutamine (20 mM) + Sodium Chloride (400 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 8 (C), shaken=1200 rpm
By: Joshua Elmore on September 1, 2021
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 7 genes in this experiment

For stress L-Glutamine in Pseudomonas fluorescens SBW25-INTG

For stress L-Glutamine across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
4-coumarate degradation (aerobic) 5 3 2
benzoyl-CoA biosynthesis 3 3 1
4-coumarate degradation (anaerobic) 6 2 2
2-methyl-branched fatty acid β-oxidation 14 11 3
adipate degradation 5 5 1
fatty acid β-oxidation II (plant peroxisome) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
glutaryl-CoA degradation 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 33 6
fatty acid salvage 6 6 1
methyl ketone biosynthesis (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
fatty acid β-oxidation I (generic) 7 6 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
benzoyl-CoA degradation I (aerobic) 7 3 1
pyruvate fermentation to butanoate 7 3 1
L-valine degradation I 8 6 1
pyruvate fermentation to butanol I 8 4 1
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
phenylacetate degradation I (aerobic) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 5 1
superpathway of phenylethylamine degradation 11 6 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
L-glutamate degradation VII (to butanoate) 12 3 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
L-tryptophan degradation III (eukaryotic) 15 6 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1