Experiment set17IT058 for Pseudomonas stutzeri RCH2

Compare to:

LB with Choline chloride 90 mM

Group: stress
Media: LB + Choline chloride (90 mM)
Culturing: psRCH2_ML7c, 48 well microplate; Tecan Infinite F200, Aerobic, at 28 (C), shaken=orbital
By: Kelly on 4/17/2014
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 885 A5,A6

Specific Phenotypes

For 29 genes in this experiment

For stress Choline chloride in Pseudomonas stutzeri RCH2

For stress Choline chloride across organisms

SEED Subsystems

Subsystem #Specific
Choline and Betaine Uptake and Betaine Biosynthesis 3
ATP-dependent RNA helicases, bacterial 2
Biotin biosynthesis 1
Campylobacter Iron Metabolism 1
Maltose and Maltodextrin Utilization 1
Phosphate metabolism 1
Polyamine Metabolism 1
Protein degradation 1
Ribosome activity modulation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 2
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 2
choline degradation I 2 2 2
long-chain fatty acid activation 1 1 1
choline-O-sulfate degradation 3 2 2
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
β-alanine biosynthesis IV 2 1 1
β-alanine biosynthesis I 2 1 1
L-tryptophan biosynthesis 6 6 2
fatty acid salvage 6 6 2
fatty acid biosynthesis initiation (type II) 3 3 1
glycine betaine biosynthesis III (plants) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
dimethylsulfoniopropanoate biosynthesis I (Wollastonia) 3 1 1
alkane biosynthesis II 3 1 1
starch degradation I 3 1 1
oleate biosynthesis I (plants) 3 1 1
phytol degradation 4 3 1
choline degradation IV 4 2 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
dimethylsulfoniopropanoate biosynthesis II (Spartina) 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
superpathway of fatty acid biosynthesis initiation 5 4 1
octane oxidation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
DIBOA-glucoside biosynthesis 6 1 1
stearate biosynthesis I (animals) 6 1 1
superpathway of L-tryptophan biosynthesis 13 13 2
ceramide degradation by α-oxidation 7 2 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
glycogen degradation I 8 7 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
superpathway of fatty acid biosynthesis II (plant) 43 38 5
superpathway of aromatic amino acid biosynthesis 18 18 2
suberin monomers biosynthesis 20 2 2
superpathway of benzoxazinoid glucosides biosynthesis 13 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
superpathway of fatty acid biosynthesis I (E. coli) 16 15 1
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 3
palmitate biosynthesis III 29 21 1
superpathway of chorismate metabolism 59 44 2
streptorubin B biosynthesis 34 20 1
oleate β-oxidation 35 30 1