(0.1x) + Pelleted after growth overnight in LB+Kan50 + CaCl2, MgSO4 (10mM ), pH=7
Pathway | #Steps | #Present | #Specific |
ammonia assimilation cycle III | 3 | 3 | 3 |
L-glutamate biosynthesis I | 2 | 2 | 2 |
L-glutamine degradation I | 1 | 1 | 1 |
fatty acid β-oxidation III (unsaturated, odd number) | 1 | 1 | 1 |
L-glutamine biosynthesis I | 1 | 1 | 1 |
L-glutamine degradation II | 1 | 1 | 1 |
benzoyl-CoA biosynthesis | 3 | 3 | 2 |
fatty acid β-oxidation IV (unsaturated, even number) | 5 | 3 | 3 |
fatty acid β-oxidation I (generic) | 7 | 6 | 4 |
oleate β-oxidation (thioesterase-dependent, yeast) | 2 | 2 | 1 |
ammonia assimilation cycle I | 2 | 2 | 1 |
ammonia assimilation cycle II | 2 | 2 | 1 |
putrescine degradation II | 4 | 3 | 2 |
oleate β-oxidation | 35 | 32 | 16 |
L-glutamate and L-glutamine biosynthesis | 7 | 6 | 3 |
adipate degradation | 5 | 4 | 2 |
glutaryl-CoA degradation | 5 | 3 | 2 |
adipate biosynthesis | 5 | 3 | 2 |
fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 2 |
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) | 5 | 2 | 2 |
pyruvate fermentation to hexanol (engineered) | 11 | 7 | 4 |
(8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 4 |
2-methyl-branched fatty acid β-oxidation | 14 | 11 | 5 |
fatty acid salvage | 6 | 6 | 2 |
superpathway of ammonia assimilation (plants) | 3 | 3 | 1 |
pyruvate fermentation to butanol II (engineered) | 6 | 5 | 2 |
L-isoleucine degradation I | 6 | 5 | 2 |
valproate β-oxidation | 9 | 6 | 3 |
propanoate fermentation to 2-methylbutanoate | 6 | 4 | 2 |
methyl ketone biosynthesis (engineered) | 6 | 3 | 2 |
L-aspartate degradation III (anaerobic) | 3 | 1 | 1 |
L-aspartate degradation II (aerobic) | 3 | 1 | 1 |
acrylate degradation II | 3 | 1 | 1 |
oleate β-oxidation (reductase-dependent, yeast) | 3 | 1 | 1 |
pyruvate fermentation to butanoate | 7 | 3 | 2 |
fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 2 |
benzoyl-CoA degradation I (aerobic) | 7 | 2 | 2 |
L-valine degradation I | 8 | 7 | 2 |
superpathway of ornithine degradation | 8 | 6 | 2 |
pyruvate fermentation to butanol I | 8 | 4 | 2 |
glutaminyl-tRNAgln biosynthesis via transamidation | 4 | 1 | 1 |
L-asparagine biosynthesis III (tRNA-dependent) | 4 | 1 | 1 |
oleate β-oxidation (isomerase-dependent, yeast) | 4 | 1 | 1 |
superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 5 | 2 |
benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 2 |
phenylacetate degradation I (aerobic) | 9 | 2 | 2 |
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 5 | 1 |
propanoyl-CoA degradation II | 5 | 3 | 1 |
L-glutamate degradation V (via hydroxyglutarate) | 10 | 5 | 2 |
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
3-phenylpropanoate degradation | 10 | 4 | 2 |
acrylate degradation I | 5 | 2 | 1 |
4-hydroxybenzoate biosynthesis III (plants) | 5 | 2 | 1 |
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 1 | 1 |
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation | 11 | 6 | 2 |
superpathway of phenylethylamine degradation | 11 | 3 | 2 |
β-alanine biosynthesis II | 6 | 4 | 1 |
3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 7 | 3 |
L-glutamate degradation VII (to butanoate) | 12 | 4 | 2 |
6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
superpathway of L-arginine and L-ornithine degradation | 13 | 8 | 2 |
superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 6 | 2 |
superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 2 |
Spodoptera littoralis pheromone biosynthesis | 22 | 4 | 3 |
L-tryptophan degradation III (eukaryotic) | 15 | 3 | 2 |
L-citrulline biosynthesis | 8 | 7 | 1 |
glycerol degradation to butanol | 16 | 10 | 2 |
2-methylpropene degradation | 8 | 2 | 1 |
crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 3 | 2 |
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 8 | 2 |
benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 3 | 2 |
toluene degradation VI (anaerobic) | 18 | 3 | 2 |
L-arginine biosynthesis II (acetyl cycle) | 10 | 9 | 1 |
superpathway of coenzyme A biosynthesis II (plants) | 10 | 8 | 1 |
methyl tert-butyl ether degradation | 10 | 2 | 1 |
gallate degradation III (anaerobic) | 11 | 3 | 1 |
superpathway of L-citrulline metabolism | 12 | 9 | 1 |
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
androstenedione degradation I (aerobic) | 25 | 6 | 2 |
3-hydroxypropanoate cycle | 13 | 4 | 1 |
platensimycin biosynthesis | 26 | 6 | 2 |
glyoxylate assimilation | 13 | 3 | 1 |
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
1-butanol autotrophic biosynthesis (engineered) | 27 | 21 | 2 |
androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
superpathway of testosterone and androsterone degradation | 28 | 6 | 2 |
superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 3 |
docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 8 | 3 |
cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
superpathway of the 3-hydroxypropanoate cycle | 18 | 4 | 1 |
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 2 | 1 |
superpathway of cholesterol degradation III (oxidase) | 49 | 4 | 2 |
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 21 | 1 |