Experiment set15IT067 for Shewanella oneidensis MR-1

Compare to:

Dictyostellum sp.mixed culture-1

Group: micoeukaryotes
Media: LB (0.1x) + Pelleted after growth overnight in LB+Kan50 + CaCl2, MgSO4 (10mM ), pH=7
Culturing: MR1_ML3b, 48-well_plate, Aerobic, at 30 (C), shaken=700 rpm
By: VM on 6/23/21
Media components: 1 g/L Tryptone, 0.5 g/L Yeast Extract, 0.5 g/L Sodium Chloride (final concentrations)

Specific Phenotypes

For 21 genes in this experiment

For micoeukaryotes Pelleted after growth overnight in LB+Kan50 in Shewanella oneidensis MR-1

For micoeukaryotes Pelleted after growth overnight in LB+Kan50 across organisms

SEED Subsystems

Subsystem #Specific
Ammonia assimilation 2
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 2
High affinity phosphate transporter and control of PHO regulon 2
Isoleucine degradation 2
Phosphate metabolism 2
Valine degradation 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Polyhydroxybutyrate metabolism 1
Ribosome biogenesis bacterial 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
ammonia assimilation cycle III 3 3 3
L-glutamate biosynthesis I 2 2 2
L-glutamine degradation I 1 1 1
L-glutamine biosynthesis I 1 1 1
L-glutamine degradation II 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 6 4
ammonia assimilation cycle I 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
ammonia assimilation cycle II 2 2 1
putrescine degradation II 4 3 2
oleate β-oxidation 35 32 16
L-glutamate and L-glutamine biosynthesis 7 6 3
adipate degradation 5 4 2
adipate biosynthesis 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 11 5
fatty acid salvage 6 6 2
superpathway of ammonia assimilation (plants) 3 3 1
pyruvate fermentation to butanol II (engineered) 6 5 2
L-isoleucine degradation I 6 5 2
valproate β-oxidation 9 6 3
propanoate fermentation to 2-methylbutanoate 6 4 2
methyl ketone biosynthesis (engineered) 6 3 2
L-aspartate degradation III (anaerobic) 3 1 1
acrylate degradation II 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
L-aspartate degradation II (aerobic) 3 1 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
pyruvate fermentation to butanoate 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
L-valine degradation I 8 7 2
superpathway of ornithine degradation 8 6 2
pyruvate fermentation to butanol I 8 4 2
L-asparagine biosynthesis III (tRNA-dependent) 4 1 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 2 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
propanoyl-CoA degradation II 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
acrylate degradation I 5 2 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 6 2
superpathway of phenylethylamine degradation 11 3 2
β-alanine biosynthesis II 6 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 7 3
L-glutamate degradation VII (to butanoate) 12 4 2
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of L-arginine and L-ornithine degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 3 2
L-citrulline biosynthesis 8 7 1
glycerol degradation to butanol 16 10 2
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
toluene degradation VI (anaerobic) 18 3 2
L-arginine biosynthesis II (acetyl cycle) 10 9 1
superpathway of coenzyme A biosynthesis II (plants) 10 8 1
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
superpathway of L-citrulline metabolism 12 9 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
3-hydroxypropanoate cycle 13 4 1
platensimycin biosynthesis 26 6 2
glyoxylate assimilation 13 3 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 21 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of the 3-hydroxypropanoate cycle 18 4 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1