Experiment set13IT091 for Pseudomonas fluorescens FW300-N2E2

Compare to:

LB with Cobalt chloride hexahydrate 0.6 mM

Group: stress
Media: LB + Cobalt chloride hexahydrate (0.6 mM)
Culturing: pseudo6_N2E2_ML5b, 48 well microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
By: Adam on 25-Jul-16
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: Plate2 E7,E8

Specific Phenotypes

For 36 genes in this experiment

For stress Cobalt chloride hexahydrate in Pseudomonas fluorescens FW300-N2E2

For stress Cobalt chloride hexahydrate across organisms

SEED Subsystems

Subsystem #Specific
Alanine biosynthesis 2
Arginine and Ornithine Degradation 2
Cysteine Biosynthesis 2
Methionine Biosynthesis 2
Bacterial Chemotaxis 1
Carboxysome 1
Copper homeostasis: copper tolerance 1
Flagellar motility 1
Folate Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutathione-regulated potassium-efflux system and associated functions 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine and Serine Utilization 1
Periplasmic disulfide interchange 1
Phosphate metabolism 1
Potassium homeostasis 1
Pyruvate Alanine Serine Interconversions 1
Respiratory dehydrogenases 1 1
Threonine anaerobic catabolism gene cluster 1
Threonine and Homoserine Biosynthesis 1
Two-component regulatory systems in Campylobacter 1
Universal stress protein family 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate biosynthesis 1 1 1
L-ornithine degradation I (L-proline biosynthesis) 1 1 1
L-alanine biosynthesis III 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
L-cysteine degradation IV 1 1 1
L-cysteine degradation II 3 3 2
D-serine degradation 3 3 2
L-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
NADH to cytochrome bo oxidase electron transfer I 2 2 1
L-cysteine biosynthesis I 2 2 1
L-glutamate degradation II 2 2 1
NADH to cytochrome bo oxidase electron transfer II 2 2 1
NADH to cytochrome aa3 oxidase electron transfer 2 1 1
L-arginine degradation VII (arginase 3 pathway) 2 1 1
atromentin biosynthesis 2 1 1
diethylphosphate degradation 2 1 1
NADH to cytochrome bd oxidase electron transfer I 2 1 1
malate/L-aspartate shuttle pathway 2 1 1
L-proline biosynthesis II (from arginine) 2 1 1
nitrate reduction VIIIb (dissimilatory) 2 1 1
NADH to nitrate electron transfer 2 1 1
NADH to cytochrome bd oxidase electron transfer II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
L-tyrosine degradation II 2 1 1
cytidylyl molybdenum cofactor sulfurylation 2 1 1
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
aerobic respiration III (alternative oxidase pathway) 3 3 1
L-tyrosine biosynthesis I 3 3 1
dTMP de novo biosynthesis (mitochondrial) 3 3 1
assimilatory sulfate reduction III 3 3 1
L-phenylalanine biosynthesis I 3 3 1
tetrahydrofolate biosynthesis I 3 3 1
L-methionine biosynthesis II 6 5 2
L-asparagine degradation III (mammalian) 3 2 1
oleate biosynthesis III (cyanobacteria) 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
sulfolactate degradation III 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
(R)-cysteate degradation 3 1 1
bis(guanylyl molybdopterin) cofactor sulfurylation 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
glycine betaine degradation III 7 7 2
thiazole component of thiamine diphosphate biosynthesis II 7 4 2
superpathway of L-alanine biosynthesis 4 4 1
CDP-diacylglycerol biosynthesis I 4 4 1
CDP-diacylglycerol biosynthesis II 4 4 1
assimilatory sulfate reduction I 4 4 1
glycine betaine degradation I 8 6 2
tetrahydromonapterin biosynthesis 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
L-mimosine degradation 8 4 2
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
glutathione-mediated detoxification I 8 3 2
tRNA-uridine 2-thiolation (yeast mitochondria) 4 1 1
tRNA-uridine 2-thiolation (mammalian mitochondria) 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
superpathway of sulfate assimilation and cysteine biosynthesis 9 9 2
L-tyrosine degradation I 5 5 1
mitochondrial NADPH production (yeast) 5 4 1
phosphatidate biosynthesis (yeast) 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
seleno-amino acid biosynthesis (plants) 5 3 1
[2Fe-2S] iron-sulfur cluster biosynthesis 10 4 2
superpathway of plastoquinol biosynthesis 5 2 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
tRNA-uridine 2-thiolation (thermophilic bacteria) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
superpathway of thiamine diphosphate biosynthesis II 11 8 2
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 2
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 2
phosphatidylglycerol biosynthesis I 6 6 1
superpathway of L-threonine biosynthesis 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
superpathway of phospholipid biosynthesis III (E. coli) 12 11 2
molybdopterin biosynthesis 6 4 1
TCA cycle VIII (Chlamydia) 6 4 1
thiazole component of thiamine diphosphate biosynthesis I 6 3 1
Fe(II) oxidation 6 3 1
NAD(P)/NADPH interconversion 6 3 1
superpathway of stearidonate biosynthesis (cyanobacteria) 6 2 1
superpathway of sulfolactate degradation 6 2 1
palmitoyl ethanolamide biosynthesis 6 2 1
hydrogen sulfide biosynthesis II (mammalian) 6 1 1
coenzyme M biosynthesis II 6 1 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 2
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
diacylglycerol and triacylglycerol biosynthesis 7 3 1
stigma estolide biosynthesis 7 2 1
staphyloferrin B biosynthesis 7 1 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
anandamide biosynthesis II 8 2 1
tRNA-uridine 2-thiolation (cytoplasmic) 8 1 1
superpathway of aromatic amino acid biosynthesis 18 18 2
folate transformations III (E. coli) 9 9 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 5 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of tetrahydrofolate biosynthesis 10 8 1
superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) 10 8 1
superpathway of thiamine diphosphate biosynthesis I 10 7 1
rosmarinic acid biosynthesis I 10 3 1
folate transformations II (plants) 11 10 1
tRNA-uridine 2-thiolation and selenation (bacteria) 11 4 1
(S)-reticuline biosynthesis I 11 1 1
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
purine nucleobases degradation II (anaerobic) 24 16 2
indole-3-acetate biosynthesis II 12 5 1
anandamide biosynthesis I 12 3 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of cardiolipin biosynthesis (bacteria) 13 10 1
dapdiamides biosynthesis 13 2 1
zwittermicin A biosynthesis 13 1 1
superpathway of phospholipid biosynthesis II (plants) 28 10 2
superpathway of rosmarinic acid biosynthesis 14 4 1
sulfazecin biosynthesis 16 2 1
superpathway of anaerobic energy metabolism (invertebrates) 17 8 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
superpathway of seleno-compound metabolism 19 6 1
superpathway of chorismate metabolism 59 43 3
aspartate superpathway 25 22 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1