Experiment set12H20 for Pseudomonas stutzeri RCH2

Compare to:

L-tyrosine disodium salt carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-tyrosine disodium salt (20 mM), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.4 generations
By: Kelly on 2/25/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 63 genes in this experiment

For carbon source L-tyrosine disodium salt in Pseudomonas stutzeri RCH2

For carbon source L-tyrosine disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Pyruvate metabolism I: anaplerotic reactions, PEP 3
Arginine and Ornithine Degradation 2
Aromatic amino acid degradation 2
Coenzyme B12 biosynthesis 2
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 2
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 2
Homogentisate pathway of aromatic compound degradation 2
Lactate utilization 2
Na+ translocating decarboxylases and related biotin-dependent enzymes 2
Orphan regulatory proteins 2
Oxidative stress 2
Serine-glyoxylate cycle 2
Biotin biosynthesis 1
Catechol branch of beta-ketoadipate pathway 1
Fermentations: Mixed acid 1
Gentisare degradation 1
Glutamate dehydrogenases 1
Leucine Degradation and HMG-CoA Metabolism 1
Methionine Biosynthesis 1
Methylcitrate cycle 1
Phosphate metabolism 1
Plastoquinone Biosynthesis 1
Proline, 4-hydroxyproline uptake and utilization 1
Proline Synthesis 1
Propionate-CoA to Succinate Module 1
Protocatechuate branch of beta-ketoadipate pathway 1
Pterin biosynthesis 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Respiratory dehydrogenases 1 1
Ribosomal protein S12p Asp methylthiotransferase 1
Salicylate and gentisate catabolism 1
Sodium Hydrogen Antiporter 1
Threonine and Homoserine Biosynthesis 1
Tocopherol Biosynthesis 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-tyrosine degradation I 5 5 5
adenosine nucleotides degradation III 1 1 1
L-glutamate biosynthesis III 1 1 1
L-tyrosine biosynthesis IV 1 1 1
L-aspartate degradation I 1 1 1
L-phenylalanine degradation I (aerobic) 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
long-chain fatty acid activation 1 1 1
L-aspartate biosynthesis 1 1 1
L-proline degradation I 3 3 2
oleate biosynthesis III (cyanobacteria) 3 2 2
CDP-diacylglycerol biosynthesis I 4 4 2
CDP-diacylglycerol biosynthesis II 4 4 2
L-glutamate degradation II 2 2 1
UDP-N-acetyl-α-D-quinovosamine biosynthesis 2 2 1
L-phenylalanine biosynthesis III (cytosolic, plants) 2 2 1
CO2 fixation into oxaloacetate (anaplerotic) 2 2 1
UDP-2-acetamido-4-amino-2,4,6-trideoxy-α-D-galactose biosynthesis 2 2 1
linoleate biosynthesis II (animals) 2 1 1
phospholipid remodeling (phosphatidate, yeast) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
UDP-N-acetyl-α-D-fucosamine biosynthesis 2 1 1
L-tyrosine degradation II 2 1 1
proline to cytochrome bo oxidase electron transfer 2 1 1
palmitoleate biosynthesis III (cyanobacteria) 2 1 1
atromentin biosynthesis 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
malate/L-aspartate shuttle pathway 2 1 1
phosphatidate biosynthesis (yeast) 5 3 2
superpathway of plastoquinol biosynthesis 5 2 2
fatty acid salvage 6 6 2
phosphatidylglycerol biosynthesis I 6 6 2
phosphatidylglycerol biosynthesis II 6 6 2
L-phenylalanine biosynthesis I 3 3 1
ketolysis 3 3 1
fatty acid biosynthesis initiation (type II) 3 3 1
L-phenylalanine degradation V 3 3 1
L-tyrosine biosynthesis I 3 3 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 4
L-phenylalanine degradation II (anaerobic) 3 2 1
L-arginine degradation I (arginase pathway) 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
UDP-yelosamine biosynthesis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
palmitoyl ethanolamide biosynthesis 6 2 2
superpathway of stearidonate biosynthesis (cyanobacteria) 6 2 2
plastoquinol-9 biosynthesis I 3 1 1
oleate biosynthesis I (plants) 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
(R)-cysteate degradation 3 1 1
UDP-N,N'-diacetylbacillosamine biosynthesis 3 1 1
sulfolactate degradation III 3 1 1
alkane biosynthesis II 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
L-methionine salvage from L-homocysteine 3 1 1
diacylglycerol and triacylglycerol biosynthesis 7 3 2
stigma estolide biosynthesis 7 2 2
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 3
L-methionine biosynthesis III 4 4 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
phytol degradation 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
anandamide biosynthesis II 8 2 2
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
4-hydroxy-2-nonenal detoxification 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
ethene biosynthesis II (microbes) 4 1 1
wax esters biosynthesis II 4 1 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 2
L-phenylalanine degradation IV (mammalian, via side chain) 9 3 2
sporopollenin precursors biosynthesis 18 4 4
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 3
2-methylcitrate cycle I 5 5 1
superpathway of fatty acid biosynthesis initiation 5 4 1
L-methionine biosynthesis I 5 3 1
octane oxidation 5 3 1
CDP-diacylglycerol biosynthesis III 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
pentachlorophenol degradation 10 3 2
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
gallate degradation III (anaerobic) 11 5 2
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 2
superpathway of L-threonine biosynthesis 6 6 1
TCA cycle VIII (Chlamydia) 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
glyoxylate cycle 6 5 1
2-methylcitrate cycle II 6 5 1
stearate biosynthesis IV 6 4 1
methylgallate degradation 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of sulfolactate degradation 6 2 1
anandamide biosynthesis I 12 3 2
stearate biosynthesis I (animals) 6 1 1
coenzyme M biosynthesis II 6 1 1
(5R)-carbapenem carboxylate biosynthesis 6 1 1
superpathway of cardiolipin biosynthesis (bacteria) 13 9 2
L-Nδ-acetylornithine biosynthesis 7 5 1
L-glutamate and L-glutamine biosynthesis 7 5 1
acetyl-CoA fermentation to butanoate 7 4 1
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
L-glutamate degradation XI (reductive Stickland reaction) 7 4 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 1
4-aminobutanoate degradation V 7 3 1
superpathway of phospholipid biosynthesis II (plants) 28 10 4
succinate fermentation to butanoate 7 2 1
ceramide degradation by α-oxidation 7 2 1
vitamin E biosynthesis (tocopherols) 7 1 1
capsaicin biosynthesis 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
partial TCA cycle (obligate autotrophs) 8 8 1
L-citrulline biosynthesis 8 7 1
superpathway of L-homoserine and L-methionine biosynthesis 8 6 1
nitrogen remobilization from senescing leaves 8 5 1
protocatechuate degradation I (meta-cleavage pathway) 8 3 1
glutathione-mediated detoxification I 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
superpathway of fatty acid biosynthesis II (plant) 43 38 5
superpathway of aromatic amino acid biosynthesis 18 18 2
folate transformations III (E. coli) 9 9 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 2
superpathway of S-adenosyl-L-methionine biosynthesis 9 7 1
TCA cycle VI (Helicobacter) 9 7 1
glutathione-mediated detoxification II 9 1 1
gliotoxin biosynthesis 9 1 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 1
superpathway of vanillin and vanillate degradation 10 3 1
suberin monomers biosynthesis 20 2 2
rosmarinic acid biosynthesis I 10 1 1
folate transformations II (plants) 11 10 1
(S)-reticuline biosynthesis I 11 1 1
tropane alkaloids biosynthesis 11 1 1
superpathway of glyoxylate bypass and TCA 12 11 1
superpathway of L-citrulline metabolism 12 9 1
syringate degradation 12 3 1
indole glucosinolate activation (intact plant cell) 12 3 1
indole-3-acetate biosynthesis II 12 3 1
camalexin biosynthesis 12 2 1
aspartate superpathway 25 22 2
superpathway of L-isoleucine biosynthesis I 13 13 1
folate transformations I 13 9 1
formaldehyde assimilation I (serine pathway) 13 5 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
superpathway of rosmarinic acid biosynthesis 14 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
superpathway of fatty acid biosynthesis I (E. coli) 16 15 1
mixed acid fermentation 16 12 1
superpathway of L-methionine salvage and degradation 16 5 1
superpathway of hyoscyamine (atropine) and scopolamine biosynthesis 16 3 1
plasmalogen biosynthesis I (aerobic) 16 1 1
cutin biosynthesis 16 1 1
superpathway of anaerobic energy metabolism (invertebrates) 17 9 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 3
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 24 9 1
ethene biosynthesis V (engineered) 25 18 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 2
palmitate biosynthesis III 29 21 1
superpathway of chorismate metabolism 59 44 2
streptorubin B biosynthesis 34 20 1
oleate β-oxidation 35 30 1