Experiment set12H19 for Pseudomonas stutzeri RCH2

Compare to:

L-tyrosine disodium salt carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-tyrosine disodium salt (20 mM), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.2 generations
By: Kelly on 2/25/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 63 genes in this experiment

For carbon source L-tyrosine disodium salt in Pseudomonas stutzeri RCH2

For carbon source L-tyrosine disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Aromatic amino acid degradation 3
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 3
Pyruvate metabolism I: anaplerotic reactions, PEP 3
Serine-glyoxylate cycle 3
Coenzyme B12 biosynthesis 2
Homogentisate pathway of aromatic compound degradation 2
Na+ translocating decarboxylases and related biotin-dependent enzymes 2
Orphan regulatory proteins 2
Oxidative stress 2
Acetyl-CoA fermentation to Butyrate 1
Archaeal lipids 1
Arginine and Ornithine Degradation 1
Biotin biosynthesis 1
Butanol Biosynthesis 1
Catechol branch of beta-ketoadipate pathway 1
DNA-replication 1
Fermentations: Mixed acid 1
Folate Biosynthesis 1
Gentisare degradation 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Iron acquisition in Vibrio 1
Isoprenoid Biosynthesis 1
Lactate utilization 1
Leucine Degradation and HMG-CoA Metabolism 1
MLST 1
Methionine Biosynthesis 1
Phosphate metabolism 1
Plastoquinone Biosynthesis 1
Polyamine Metabolism 1
Polyhydroxybutyrate metabolism 1
Proline, 4-hydroxyproline uptake and utilization 1
Protocatechuate branch of beta-ketoadipate pathway 1
Pterin biosynthesis 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Respiratory dehydrogenases 1 1
Salicylate and gentisate catabolism 1
Sodium Hydrogen Antiporter 1
Tocopherol Biosynthesis 1
Transport of Iron 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
adenosine nucleotides degradation III 1 1 1
L-glutamine biosynthesis I 1 1 1
L-phenylalanine degradation I (aerobic) 1 1 1
L-tyrosine biosynthesis IV 1 1 1
L-tyrosine degradation I 5 5 4
fatty acid salvage 6 6 4
L-proline degradation I 3 3 2
ketolysis 3 3 2
oleate biosynthesis III (cyanobacteria) 3 2 2
CDP-diacylglycerol biosynthesis II 4 4 2
CDP-diacylglycerol biosynthesis I 4 4 2
CO2 fixation into oxaloacetate (anaplerotic) 2 2 1
ammonia assimilation cycle I 2 2 1
phospholipid remodeling (phosphatidate, yeast) 2 1 1
ammonia assimilation cycle II 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
proline to cytochrome bo oxidase electron transfer 2 1 1
palmitoleate biosynthesis III (cyanobacteria) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
phosphatidate biosynthesis (yeast) 5 3 2
oleate β-oxidation 35 30 12
phosphatidylglycerol biosynthesis I 6 6 2
phosphatidylglycerol biosynthesis II 6 6 2
benzoyl-CoA biosynthesis 3 3 1
ammonia assimilation cycle III 3 3 1
tetrahydrofolate biosynthesis I 3 3 1
dTMP de novo biosynthesis (mitochondrial) 3 3 1
formaldehyde oxidation II (glutathione-dependent) 3 3 1
fatty acid biosynthesis initiation (type II) 3 3 1
L-phenylalanine degradation V 3 3 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 4
methylglyoxal degradation VIII 3 2 1
L-aspartate degradation III (anaerobic) 3 2 1
methylglyoxal degradation I 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
L-arginine degradation I (arginase pathway) 3 2 1
superpathway of ammonia assimilation (plants) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
palmitoyl ethanolamide biosynthesis 6 2 2
superpathway of stearidonate biosynthesis (cyanobacteria) 6 2 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
polyhydroxybutanoate biosynthesis 3 1 1
plastoquinol-9 biosynthesis I 3 1 1
L-methionine salvage from L-homocysteine 3 1 1
2-methyl-branched fatty acid β-oxidation 14 10 4
acetyl-CoA fermentation to butanoate 7 4 2
diacylglycerol and triacylglycerol biosynthesis 7 3 2
stigma estolide biosynthesis 7 2 2
L-methionine biosynthesis III 4 4 1
tetrahydromonapterin biosynthesis 4 3 1
phytol degradation 4 3 1
2-deoxy-D-ribose degradation II 8 2 2
anandamide biosynthesis II 8 2 2
wax esters biosynthesis II 4 1 1
4-hydroxy-2-nonenal detoxification 4 1 1
ethene biosynthesis II (microbes) 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
folate transformations III (E. coli) 9 9 2
valproate β-oxidation 9 7 2
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
superpathway of fatty acid biosynthesis initiation 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 2
octane oxidation 5 3 1
CDP-diacylglycerol biosynthesis III 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
ketogenesis 5 3 1
L-methionine biosynthesis I 5 3 1
glutaryl-CoA degradation 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
pentachlorophenol degradation 10 3 2
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
folate transformations II (plants) 11 10 2
pyruvate fermentation to hexanol (engineered) 11 7 2
gallate degradation III (anaerobic) 11 5 2
glyoxylate cycle 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
stearate biosynthesis IV 6 4 1
methylgallate degradation 6 2 1
4-ethylphenol degradation (anaerobic) 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
anandamide biosynthesis I 12 3 2
(5R)-carbapenem carboxylate biosynthesis 6 1 1
stearate biosynthesis I (animals) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of cardiolipin biosynthesis (bacteria) 13 9 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
L-Nδ-acetylornithine biosynthesis 7 5 1
L-glutamate and L-glutamine biosynthesis 7 5 1
fatty acid β-oxidation I (generic) 7 5 1
L-glutamate degradation XI (reductive Stickland reaction) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 1
pyruvate fermentation to butanoate 7 3 1
4-aminobutanoate degradation V 7 3 1
superpathway of phospholipid biosynthesis II (plants) 28 10 4
ceramide degradation by α-oxidation 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 2 1
succinate fermentation to butanoate 7 2 1
mevalonate pathway II (haloarchaea) 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
vitamin E biosynthesis (tocopherols) 7 1 1
partial TCA cycle (obligate autotrophs) 8 8 1
L-citrulline biosynthesis 8 7 1
superpathway of L-homoserine and L-methionine biosynthesis 8 6 1
nitrogen remobilization from senescing leaves 8 5 1
pyruvate fermentation to butanol I 8 4 1
protocatechuate degradation I (meta-cleavage pathway) 8 3 1
glutathione-mediated detoxification I 8 3 1
superpathway of methylglyoxal degradation 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
mevalonate pathway III (Thermoplasma) 8 2 1
mevalonate pathway IV (archaea) 8 2 1
isoprene biosynthesis II (engineered) 8 2 1
2-methylpropene degradation 8 2 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of fatty acid biosynthesis II (plant) 43 38 5
superpathway of S-adenosyl-L-methionine biosynthesis 9 7 1
TCA cycle VI (Helicobacter) 9 7 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 1 1
gliotoxin biosynthesis 9 1 1
glutathione-mediated detoxification II 9 1 1
superpathway of testosterone and androsterone degradation 28 6 3
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of tetrahydrofolate biosynthesis 10 8 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 5 1
superpathway of vanillin and vanillate degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 3 1
3-phenylpropanoate degradation 10 3 1
suberin monomers biosynthesis 20 2 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 1
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
superpathway of glyoxylate bypass and TCA 12 11 1
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
superpathway of L-citrulline metabolism 12 9 1
superpathway of C1 compounds oxidation to CO2 12 4 1
indole glucosinolate activation (intact plant cell) 12 3 1
L-glutamate degradation VII (to butanoate) 12 3 1
syringate degradation 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
camalexin biosynthesis 12 2 1
folate transformations I 13 9 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
formaldehyde assimilation I (serine pathway) 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
superpathway of fatty acid biosynthesis I (E. coli) 16 15 1
mixed acid fermentation 16 12 1
glycerol degradation to butanol 16 10 1
superpathway of L-methionine salvage and degradation 16 5 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
cutin biosynthesis 16 1 1
plasmalogen biosynthesis I (aerobic) 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 3
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
aspartate superpathway 25 22 1
ethene biosynthesis V (engineered) 25 18 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 4 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 2
palmitate biosynthesis III 29 21 1
streptorubin B biosynthesis 34 20 1
superpathway of cholesterol biosynthesis 38 4 1
superpathway of L-lysine degradation 43 11 1
superpathway of chorismate metabolism 59 44 1