| Pathway | #Steps | #Present | #Specific |
| L-glutamine biosynthesis I | 1 | 1 | 1 |
| L-tyrosine biosynthesis IV | 1 | 1 | 1 |
| L-phenylalanine degradation I (aerobic) | 1 | 1 | 1 |
| adenosine nucleotides degradation III | 1 | 1 | 1 |
| long-chain fatty acid activation | 1 | 1 | 1 |
| L-tyrosine degradation I | 5 | 5 | 4 |
| fatty acid salvage | 6 | 6 | 4 |
| ketolysis | 3 | 3 | 2 |
| L-proline degradation I | 3 | 3 | 2 |
| oleate biosynthesis III (cyanobacteria) | 3 | 2 | 2 |
| CDP-diacylglycerol biosynthesis II | 4 | 4 | 2 |
| CDP-diacylglycerol biosynthesis I | 4 | 4 | 2 |
| CO2 fixation into oxaloacetate (anaplerotic) | 2 | 2 | 1 |
| ammonia assimilation cycle I | 2 | 2 | 1 |
| ammonia assimilation cycle II | 2 | 1 | 1 |
| proline to cytochrome bo oxidase electron transfer | 2 | 1 | 1 |
| acetoacetate degradation (to acetyl CoA) | 2 | 1 | 1 |
| γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
| linoleate biosynthesis II (animals) | 2 | 1 | 1 |
| phospholipid remodeling (phosphatidate, yeast) | 2 | 1 | 1 |
| palmitoleate biosynthesis III (cyanobacteria) | 2 | 1 | 1 |
| 5,6-dehydrokavain biosynthesis (engineered) | 10 | 6 | 4 |
| phosphatidate biosynthesis (yeast) | 5 | 3 | 2 |
| oleate β-oxidation | 35 | 30 | 12 |
| phosphatidylglycerol biosynthesis II | 6 | 6 | 2 |
| phosphatidylglycerol biosynthesis I | 6 | 6 | 2 |
| dTMP de novo biosynthesis (mitochondrial) | 3 | 3 | 1 |
| benzoyl-CoA biosynthesis | 3 | 3 | 1 |
| formaldehyde oxidation II (glutathione-dependent) | 3 | 3 | 1 |
| ammonia assimilation cycle III | 3 | 3 | 1 |
| L-phenylalanine degradation V | 3 | 3 | 1 |
| fatty acid biosynthesis initiation (type II) | 3 | 3 | 1 |
| tetrahydrofolate biosynthesis I | 3 | 3 | 1 |
| superpathway of phospholipid biosynthesis III (E. coli) | 12 | 10 | 4 |
| superpathway of ammonia assimilation (plants) | 3 | 2 | 1 |
| L-arginine degradation I (arginase pathway) | 3 | 2 | 1 |
| L-aspartate degradation II (aerobic) | 3 | 2 | 1 |
| L-aspartate degradation III (anaerobic) | 3 | 2 | 1 |
| methylglyoxal degradation VIII | 3 | 2 | 1 |
| methylglyoxal degradation I | 3 | 2 | 1 |
| 3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
| palmitoyl ethanolamide biosynthesis | 6 | 2 | 2 |
| superpathway of stearidonate biosynthesis (cyanobacteria) | 6 | 2 | 2 |
| alkane biosynthesis II | 3 | 1 | 1 |
| L-methionine salvage from L-homocysteine | 3 | 1 | 1 |
| polyhydroxybutanoate biosynthesis | 3 | 1 | 1 |
| plastoquinol-9 biosynthesis I | 3 | 1 | 1 |
| oleate biosynthesis I (plants) | 3 | 1 | 1 |
| 2-methyl-branched fatty acid β-oxidation | 14 | 10 | 4 |
| acetyl-CoA fermentation to butanoate | 7 | 4 | 2 |
| diacylglycerol and triacylglycerol biosynthesis | 7 | 3 | 2 |
| stigma estolide biosynthesis | 7 | 2 | 2 |
| L-methionine biosynthesis III | 4 | 4 | 1 |
| tetrahydromonapterin biosynthesis | 4 | 3 | 1 |
| phytol degradation | 4 | 3 | 1 |
| 2-deoxy-D-ribose degradation II | 8 | 2 | 2 |
| anandamide biosynthesis II | 8 | 2 | 2 |
| wax esters biosynthesis II | 4 | 1 | 1 |
| phosphatidylcholine acyl editing | 4 | 1 | 1 |
| long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
| ethene biosynthesis II (microbes) | 4 | 1 | 1 |
| 4-hydroxy-2-nonenal detoxification | 4 | 1 | 1 |
| (2S)-ethylmalonyl-CoA biosynthesis | 4 | 1 | 1 |
| folate transformations III (E. coli) | 9 | 9 | 2 |
| valproate β-oxidation | 9 | 7 | 2 |
| sporopollenin precursors biosynthesis | 18 | 4 | 4 |
| adipate degradation | 5 | 5 | 1 |
| (R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 4 | 1 |
| superpathway of fatty acid biosynthesis initiation | 5 | 4 | 1 |
| L-glutamate degradation V (via hydroxyglutarate) | 10 | 7 | 2 |
| L-methionine biosynthesis I | 5 | 3 | 1 |
| 4-hydroxybenzoate biosynthesis III (plants) | 5 | 3 | 1 |
| CDP-diacylglycerol biosynthesis III | 5 | 3 | 1 |
| glutaryl-CoA degradation | 5 | 3 | 1 |
| fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 1 |
| ketogenesis | 5 | 3 | 1 |
| octane oxidation | 5 | 3 | 1 |
| 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
| sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
| superpathway of plastoquinol biosynthesis | 5 | 2 | 1 |
| fatty acid β-oxidation VII (yeast peroxisome) | 5 | 2 | 1 |
| pentachlorophenol degradation | 10 | 3 | 2 |
| ethylbenzene degradation (anaerobic) | 5 | 1 | 1 |
| pyruvate fermentation to acetone | 5 | 1 | 1 |
| isopropanol biosynthesis (engineered) | 5 | 1 | 1 |
| folate transformations II (plants) | 11 | 10 | 2 |
| pyruvate fermentation to hexanol (engineered) | 11 | 7 | 2 |
| gallate degradation III (anaerobic) | 11 | 5 | 2 |
| L-isoleucine degradation I | 6 | 5 | 1 |
| glyoxylate cycle | 6 | 5 | 1 |
| stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
| pyruvate fermentation to butanol II (engineered) | 6 | 4 | 1 |
| stearate biosynthesis IV | 6 | 4 | 1 |
| propanoate fermentation to 2-methylbutanoate | 6 | 4 | 1 |
| 4-ethylphenol degradation (anaerobic) | 6 | 2 | 1 |
| 6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
| methylgallate degradation | 6 | 2 | 1 |
| anandamide biosynthesis I | 12 | 3 | 2 |
| 10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) | 6 | 1 | 1 |
| stearate biosynthesis I (animals) | 6 | 1 | 1 |
| (5R)-carbapenem carboxylate biosynthesis | 6 | 1 | 1 |
| jasmonic acid biosynthesis | 19 | 4 | 3 |
| superpathway of cardiolipin biosynthesis (bacteria) | 13 | 9 | 2 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 2 |
| L-glutamate and L-glutamine biosynthesis | 7 | 5 | 1 |
| L-Nδ-acetylornithine biosynthesis | 7 | 5 | 1 |
| fatty acid β-oxidation I (generic) | 7 | 5 | 1 |
| L-glutamate degradation XI (reductive Stickland reaction) | 7 | 4 | 1 |
| fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 4 | 1 |
| C4 photosynthetic carbon assimilation cycle, NADP-ME type | 7 | 4 | 1 |
| pyruvate fermentation to butanoate | 7 | 3 | 1 |
| 4-aminobutanoate degradation V | 7 | 3 | 1 |
| superpathway of phospholipid biosynthesis II (plants) | 28 | 10 | 4 |
| ceramide degradation by α-oxidation | 7 | 2 | 1 |
| succinate fermentation to butanoate | 7 | 2 | 1 |
| mevalonate pathway II (haloarchaea) | 7 | 2 | 1 |
| mevalonate pathway I (eukaryotes and bacteria) | 7 | 2 | 1 |
| arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
| icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
| capsaicin biosynthesis | 7 | 1 | 1 |
| vitamin E biosynthesis (tocopherols) | 7 | 1 | 1 |
| icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
| partial TCA cycle (obligate autotrophs) | 8 | 8 | 1 |
| L-citrulline biosynthesis | 8 | 7 | 1 |
| superpathway of L-homoserine and L-methionine biosynthesis | 8 | 6 | 1 |
| nitrogen remobilization from senescing leaves | 8 | 5 | 1 |
| pyruvate fermentation to butanol I | 8 | 4 | 1 |
| protocatechuate degradation I (meta-cleavage pathway) | 8 | 3 | 1 |
| glutathione-mediated detoxification I | 8 | 3 | 1 |
| superpathway of methylglyoxal degradation | 8 | 3 | 1 |
| ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
| mevalonate pathway IV (archaea) | 8 | 2 | 1 |
| mevalonate pathway III (Thermoplasma) | 8 | 2 | 1 |
| 2-methylpropene degradation | 8 | 2 | 1 |
| isoprene biosynthesis II (engineered) | 8 | 2 | 1 |
| androstenedione degradation I (aerobic) | 25 | 6 | 3 |
| superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 5 |
| superpathway of S-adenosyl-L-methionine biosynthesis | 9 | 7 | 1 |
| superpathway of L-methionine biosynthesis (transsulfuration) | 9 | 7 | 1 |
| TCA cycle VI (Helicobacter) | 9 | 7 | 1 |
| superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 5 | 1 |
| benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 1 |
| L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 3 | 1 |
| glutathione-mediated detoxification II | 9 | 1 | 1 |
| 4-oxopentanoate degradation | 9 | 1 | 1 |
| gliotoxin biosynthesis | 9 | 1 | 1 |
| superpathway of testosterone and androsterone degradation | 28 | 6 | 3 |
| L-arginine biosynthesis II (acetyl cycle) | 10 | 10 | 1 |
| superpathway of tetrahydrofolate biosynthesis | 10 | 8 | 1 |
| superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) | 10 | 5 | 1 |
| superpathway of vanillin and vanillate degradation | 10 | 3 | 1 |
| 3-phenylpropanoate degradation | 10 | 3 | 1 |
| L-lysine fermentation to acetate and butanoate | 10 | 3 | 1 |
| methyl tert-butyl ether degradation | 10 | 3 | 1 |
| suberin monomers biosynthesis | 20 | 2 | 2 |
| superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 4 |
| C4 photosynthetic carbon assimilation cycle, NAD-ME type | 11 | 6 | 1 |
| (8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 5 | 1 |
| ethylmalonyl-CoA pathway | 11 | 1 | 1 |
| superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 9 | 4 |
| superpathway of L-methionine biosynthesis (by sulfhydrylation) | 12 | 12 | 1 |
| superpathway of glyoxylate bypass and TCA | 12 | 11 | 1 |
| superpathway of tetrahydrofolate biosynthesis and salvage | 12 | 10 | 1 |
| superpathway of L-citrulline metabolism | 12 | 9 | 1 |
| superpathway of C1 compounds oxidation to CO2 | 12 | 4 | 1 |
| syringate degradation | 12 | 3 | 1 |
| indole glucosinolate activation (intact plant cell) | 12 | 3 | 1 |
| L-glutamate degradation VII (to butanoate) | 12 | 3 | 1 |
| 10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
| 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
| camalexin biosynthesis | 12 | 2 | 1 |
| folate transformations I | 13 | 9 | 1 |
| superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 6 | 1 |
| formaldehyde assimilation I (serine pathway) | 13 | 5 | 1 |
| (4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
| androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
| C4 photosynthetic carbon assimilation cycle, PEPCK type | 14 | 9 | 1 |
| docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
| L-tryptophan degradation III (eukaryotic) | 15 | 3 | 1 |
| palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
| superpathway of fatty acid biosynthesis I (E. coli) | 16 | 15 | 1 |
| mixed acid fermentation | 16 | 12 | 1 |
| glycerol degradation to butanol | 16 | 10 | 1 |
| superpathway of L-methionine salvage and degradation | 16 | 5 | 1 |
| crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 4 | 1 |
| plasmalogen biosynthesis I (aerobic) | 16 | 1 | 1 |
| cutin biosynthesis | 16 | 1 | 1 |
| superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 8 | 1 |
| benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 4 | 1 |
| cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
| superpathway of fatty acids biosynthesis (E. coli) | 53 | 51 | 3 |
| superpathway of L-lysine, L-threonine and L-methionine biosynthesis I | 18 | 16 | 1 |
| 3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 9 | 1 |
| gluconeogenesis II (Methanobacterium thermoautotrophicum) | 18 | 9 | 1 |
| toluene degradation VI (anaerobic) | 18 | 4 | 1 |
| sitosterol degradation to androstenedione | 18 | 1 | 1 |
| cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 3 | 1 |
| superpathway of cholesterol degradation III (oxidase) | 49 | 5 | 2 |
| aspartate superpathway | 25 | 22 | 1 |
| ethene biosynthesis V (engineered) | 25 | 18 | 1 |
| superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 23 | 1 |
| photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 19 | 1 |
| platensimycin biosynthesis | 26 | 6 | 1 |
| superpathway of ergosterol biosynthesis I | 26 | 4 | 1 |
| 1-butanol autotrophic biosynthesis (engineered) | 27 | 19 | 1 |
| Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 21 | 2 |
| palmitate biosynthesis III | 29 | 21 | 1 |
| streptorubin B biosynthesis | 34 | 20 | 1 |
| superpathway of cholesterol biosynthesis | 38 | 4 | 1 |
| superpathway of L-lysine degradation | 43 | 11 | 1 |
| superpathway of chorismate metabolism | 59 | 44 | 1 |