Experiment set12H18 for Pseudomonas stutzeri RCH2

Compare to:

L-Leucine carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Leucine (20 mM), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 5.2 generations
By: Kelly on 2/25/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 14 genes in this experiment

For carbon source L-Leucine in Pseudomonas stutzeri RCH2

For carbon source L-Leucine across organisms

SEED Subsystems

Subsystem #Specific
Leucine Degradation and HMG-CoA Metabolism 4
Serine-glyoxylate cycle 4
Catechol branch of beta-ketoadipate pathway 2
Protocatechuate branch of beta-ketoadipate pathway 2
Aromatic amino acid interconversions with aryl acids 1
Branched-Chain Amino Acid Biosynthesis 1
HMG CoA Synthesis 1
Photorespiration (oxidative C2 cycle) 1
Type IV pilus 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glycolate and glyoxylate degradation II 2 2 1
2-oxobutanoate degradation II 2 1 1
L-isoleucine biosynthesis V 3 3 1
ketolysis 3 3 1
L-leucine degradation I 6 5 2
glyoxylate cycle 6 5 2
L-leucine degradation V (oxidative Stickland reaction) 3 2 1
L-isoleucine degradation III (oxidative Stickland reaction) 3 2 1
L-valine degradation III (oxidative Stickland reaction) 3 2 1
chitin deacetylation 4 2 1
gallate degradation III (anaerobic) 11 5 2
superpathway of glyoxylate bypass and TCA 12 11 2
L-isoleucine biosynthesis IV 6 5 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
superpathway of glycol metabolism and degradation 7 5 1
acetyl-CoA fermentation to butanoate 7 4 1
L-glutamate degradation XI (reductive Stickland reaction) 7 4 1
4-aminobutanoate degradation V 7 3 1
succinate fermentation to butanoate 7 2 1
D-xylose degradation IV 7 2 1
L-arabinose degradation IV 8 3 1
TCA cycle VI (Helicobacter) 9 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 2
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 1 1
superpathway of pentose and pentitol degradation 42 7 1