L-Isoleucine carbon source
Group:
carbon source
Media:
RCH2_defined_noCarbon +
L-Isoleucine (20 mM), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.3
generations
By: Kelly on
2/25/2014
Media components: 0.25 g/L
Ammonium chloride, 0.1 g/L
Potassium Chloride, 0.6 g/L
Sodium phosphate monobasic monohydrate, 30 mM
PIPES sesquisodium salt, Wolfe's mineral mix
(0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix
(0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Specific Phenotypes
For 12 genes in this experiment
For carbon source L-Isoleucine in Pseudomonas stutzeri RCH2
For carbon source L-Isoleucine across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
| Pathway | #Steps | #Present | #Specific |
| L-isoleucine biosynthesis V | 3 | 3 | 2 |
| L-isoleucine degradation III (oxidative Stickland reaction) | 3 | 2 | 2 |
| L-leucine degradation V (oxidative Stickland reaction) | 3 | 2 | 2 |
| L-valine degradation III (oxidative Stickland reaction) | 3 | 2 | 2 |
| β-alanine degradation II | 2 | 2 | 1 |
| L-alanine biosynthesis I | 2 | 2 | 1 |
| L-valine degradation I | 8 | 6 | 4 |
| 2-oxobutanoate degradation II | 2 | 1 | 1 |
| β-alanine degradation I | 2 | 1 | 1 |
| propanoyl-CoA degradation II | 5 | 3 | 2 |
| benzoyl-CoA biosynthesis | 3 | 3 | 1 |
| L-isoleucine biosynthesis IV | 6 | 5 | 2 |
| L-isoleucine degradation I | 6 | 5 | 2 |
| L-valine degradation II | 3 | 2 | 1 |
| L-leucine degradation III | 3 | 2 | 1 |
| L-isoleucine degradation II | 3 | 2 | 1 |
| acrylate degradation II | 3 | 2 | 1 |
| 2-methyl-branched fatty acid β-oxidation | 14 | 10 | 4 |
| L-valine biosynthesis | 4 | 4 | 1 |
| superpathway of L-alanine biosynthesis | 4 | 4 | 1 |
| valproate β-oxidation | 9 | 7 | 2 |
| 2-methylcitrate cycle I | 5 | 5 | 1 |
| adipate degradation | 5 | 5 | 1 |
| fatty acid β-oxidation IV (unsaturated, even number) | 5 | 4 | 1 |
| adipate biosynthesis | 5 | 4 | 1 |
| acrylate degradation I | 5 | 3 | 1 |
| fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 1 |
| benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 1 | 1 |
| L-leucine degradation IV (reductive Stickland reaction) | 5 | 1 | 1 |
| (8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 5 | 2 |
| superpathway of branched chain amino acid biosynthesis | 17 | 17 | 3 |
| L-leucine biosynthesis | 6 | 6 | 1 |
| 2-methylcitrate cycle II | 6 | 5 | 1 |
| β-alanine biosynthesis II | 6 | 5 | 1 |
| L-leucine degradation I | 6 | 5 | 1 |
| propanoate fermentation to 2-methylbutanoate | 6 | 4 | 1 |
| pyruvate fermentation to butanol II (engineered) | 6 | 4 | 1 |
| methyl ketone biosynthesis (engineered) | 6 | 3 | 1 |
| L-isoleucine biosynthesis I (from threonine) | 7 | 7 | 1 |
| fatty acid β-oxidation I (generic) | 7 | 5 | 1 |
| L-isoleucine biosynthesis III | 7 | 4 | 1 |
| fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 4 | 1 |
| benzoyl-CoA degradation I (aerobic) | 7 | 3 | 1 |
| 2,4-dinitrotoluene degradation | 7 | 1 | 1 |
| myo-inositol degradation I | 7 | 1 | 1 |
| L-isoleucine biosynthesis II | 8 | 4 | 1 |
| phenylacetate degradation I (aerobic) | 9 | 3 | 1 |
| benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 1 |
| superpathway of coenzyme A biosynthesis II (plants) | 10 | 9 | 1 |
| 3-phenylpropanoate degradation | 10 | 3 | 1 |
| myo-, chiro- and scyllo-inositol degradation | 10 | 1 | 1 |
| pyruvate fermentation to hexanol (engineered) | 11 | 7 | 1 |
| superpathway of phenylethylamine degradation | 11 | 4 | 1 |
| Spodoptera littoralis pheromone biosynthesis | 22 | 3 | 2 |
| oleate β-oxidation | 35 | 30 | 3 |
| superpathway of L-isoleucine biosynthesis I | 13 | 13 | 1 |
| 3-hydroxypropanoate cycle | 13 | 6 | 1 |
| glyoxylate assimilation | 13 | 5 | 1 |
| (4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 1 |
| docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
| superpathway of L-threonine metabolism | 18 | 13 | 1 |
| 3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 9 | 1 |
| superpathway of the 3-hydroxypropanoate cycle | 18 | 6 | 1 |
| platensimycin biosynthesis | 26 | 6 | 1 |
| 1-butanol autotrophic biosynthesis (engineered) | 27 | 19 | 1 |
| even iso-branched-chain fatty acid biosynthesis | 34 | 24 | 1 |
| odd iso-branched-chain fatty acid biosynthesis | 34 | 24 | 1 |
| anteiso-branched-chain fatty acid biosynthesis | 34 | 24 | 1 |