Experiment set12H15 for Pseudomonas stutzeri RCH2

Compare to:

L-Isoleucine carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Isoleucine (20 mM), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.5 generations
By: Kelly on 2/25/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 12 genes in this experiment

For carbon source L-Isoleucine in Pseudomonas stutzeri RCH2

For carbon source L-Isoleucine across organisms

SEED Subsystems

Subsystem #Specific
Valine degradation 6
Isoleucine degradation 4
Isobutyryl-CoA to Propionyl-CoA Module 3
Branched-Chain Amino Acid Biosynthesis 2
Leucine Degradation and HMG-CoA Metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Alanine biosynthesis 1
Anaerobic respiratory reductases 1
Aromatic amino acid interconversions with aryl acids 1
Butanol Biosynthesis 1
Leucine Biosynthesis 1
Methylcitrate cycle 1
Propionate-CoA to Succinate Module 1
Pyruvate Alanine Serine Interconversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-isoleucine biosynthesis V 3 3 2
L-isoleucine degradation III (oxidative Stickland reaction) 3 2 2
L-leucine degradation V (oxidative Stickland reaction) 3 2 2
L-valine degradation III (oxidative Stickland reaction) 3 2 2
L-alanine biosynthesis I 2 2 1
β-alanine degradation II 2 2 1
L-valine degradation I 8 6 4
β-alanine degradation I 2 1 1
2-oxobutanoate degradation II 2 1 1
propanoyl-CoA degradation II 5 3 2
benzoyl-CoA biosynthesis 3 3 1
L-isoleucine degradation I 6 5 2
L-isoleucine biosynthesis IV 6 5 2
acrylate degradation II 3 2 1
L-isoleucine degradation II 3 2 1
L-leucine degradation III 3 2 1
L-valine degradation II 3 2 1
2-methyl-branched fatty acid β-oxidation 14 10 4
L-valine biosynthesis 4 4 1
superpathway of L-alanine biosynthesis 4 4 1
valproate β-oxidation 9 7 2
adipate degradation 5 5 1
2-methylcitrate cycle I 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
acrylate degradation I 5 3 1
L-leucine degradation IV (reductive Stickland reaction) 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 2
superpathway of branched chain amino acid biosynthesis 17 17 3
L-leucine biosynthesis 6 6 1
L-leucine degradation I 6 5 1
2-methylcitrate cycle II 6 5 1
β-alanine biosynthesis II 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
L-isoleucine biosynthesis I (from threonine) 7 7 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
L-isoleucine biosynthesis III 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
myo-inositol degradation I 7 1 1
2,4-dinitrotoluene degradation 7 1 1
L-isoleucine biosynthesis II 8 4 1
phenylacetate degradation I (aerobic) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
3-phenylpropanoate degradation 10 3 1
myo-, chiro- and scyllo-inositol degradation 10 1 1
pyruvate fermentation to hexanol (engineered) 11 7 1
superpathway of phenylethylamine degradation 11 4 1
Spodoptera littoralis pheromone biosynthesis 22 3 2
oleate β-oxidation 35 30 3
superpathway of L-isoleucine biosynthesis I 13 13 1
3-hydroxypropanoate cycle 13 6 1
glyoxylate assimilation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of L-threonine metabolism 18 13 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
superpathway of the 3-hydroxypropanoate cycle 18 6 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
anteiso-branched-chain fatty acid biosynthesis 34 24 1
even iso-branched-chain fatty acid biosynthesis 34 24 1
odd iso-branched-chain fatty acid biosynthesis 34 24 1