Experiment set11IT061 for Pseudomonas fluorescens SBW25-INTG

Compare to:

p-Coumaric acid (C) and Ammonium chloride (N); with TAPS

Group: stress
Media: MME_noNitrogen_noCarbon + p-Coumaric acid (5 mM) + Ammonium chloride (10 mM) + TAPS sodium salt (20 mM) + Sodium Chloride (400 mM), pH=8.5
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 33 (C), shaken=1300 rpm
By: Rob Egbert on 11-May-21
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 51 genes in this experiment

For stress p-Coumaric acid in Pseudomonas fluorescens SBW25-INTG

For stress p-Coumaric acid across organisms

SEED Subsystems

Subsystem #Specific
Choline and Betaine Uptake and Betaine Biosynthesis 3
Glycogen metabolism 2
Maltose and Maltodextrin Utilization 2
Trehalose Uptake and Utilization 2
Acetyl-CoA fermentation to Butyrate 1
Arginine and Ornithine Degradation 1
Bacterial Chemotaxis 1
Butanol Biosynthesis 1
CBSS-262719.3.peg.410 1
Calvin-Benson cycle 1
Cysteine Biosynthesis 1
Flagellar motility 1
Fructose and Mannose Inducible PTS 1
Fructose utilization 1
Glutathione-regulated potassium-efflux system and associated functions 1
Heat shock dnaK gene cluster extended 1
Isoleucine degradation 1
Lipid A modifications 1
Mannitol Utilization 1
Nitric oxide synthase 1
Oxidative stress 1
Pentose phosphate pathway 1
Polyhydroxybutyrate metabolism 1
Potassium homeostasis 1
Pyruvate Alanine Serine Interconversions 1
Siderophore Pyoverdine 1
SigmaB stress responce regulation 1
Transcription initiation, bacterial sigma factors 1
Trehalose Biosynthesis 1
Two-component regulatory systems in Campylobacter 1
Valine degradation 1
cAMP signaling in bacteria 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
trehalose biosynthesis IV 1 1 1
cis-cyclopropane fatty acid (CFA) biosynthesis 1 1 1
starch degradation V 4 3 3
pentose phosphate pathway (partial) 3 3 2
glycogen degradation I 8 6 5
β-alanine degradation II 2 2 1
putrescine degradation V 2 2 1
UDP-α-D-glucose biosynthesis 2 2 1
superoxide radicals degradation 2 2 1
glycogen degradation II 6 5 3
starch degradation III 4 2 2
sterculate biosynthesis 2 1 1
pentose phosphate pathway (non-oxidative branch) I 5 5 2
4-coumarate degradation (aerobic) 5 3 2
sucrose biosynthesis II 8 6 3
benzoyl-CoA biosynthesis 3 3 1
pentose phosphate pathway (non-oxidative branch) II 6 5 2
D-apiose degradation I 3 2 1
GDP-α-D-glucose biosynthesis 3 2 1
sucrose degradation I (sucrose phosphotransferase) 3 2 1
trehalose degradation V 3 2 1
4-coumarate degradation (anaerobic) 6 2 2
pentose phosphate pathway 8 8 2
reactive oxygen species degradation 4 4 1
glycogen biosynthesis I (from ADP-D-Glucose) 4 3 1
sucrose degradation IV (sucrose phosphorylase) 4 3 1
glycogen biosynthesis III (from α-maltose 1-phosphate) 8 3 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 2
2-methyl-branched fatty acid β-oxidation 14 11 3
L-arginine degradation II (AST pathway) 5 5 1
dTDP-β-L-rhamnose biosynthesis 5 5 1
adipate degradation 5 5 1
Rubisco shunt 10 8 2
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 4 1
glucose and glucose-1-phosphate degradation 5 4 1
sucrose degradation II (sucrose synthase) 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
glutaryl-CoA degradation 5 3 1
D-galactose degradation I (Leloir pathway) 5 3 1
glucosylglycerol biosynthesis 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
CDP-6-deoxy-D-gulose biosynthesis 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 33 6
fatty acid salvage 6 6 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 2
β-alanine biosynthesis II 6 5 1
methyl ketone biosynthesis (engineered) 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis 6 4 1
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
Calvin-Benson-Bassham cycle 13 10 2
ethene biosynthesis III (microbes) 7 6 1
fatty acid β-oxidation I (generic) 7 6 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 5 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-valine degradation I 8 6 1
pyruvate fermentation to butanol I 8 4 1
superpathway of glucose and xylose degradation 17 16 2
oxygenic photosynthesis 17 11 2
sucrose biosynthesis I (from photosynthesis) 9 7 1
1-butanol autotrophic biosynthesis (engineered) 27 19 3
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
chitin biosynthesis 9 5 1
phenylacetate degradation I (aerobic) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
starch degradation II 9 1 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
peptidoglycan recycling II 10 8 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 5 1
starch biosynthesis 10 5 1
colanic acid building blocks biosynthesis 11 11 1
O-antigen building blocks biosynthesis (E. coli) 11 10 1
superpathway of phenylethylamine degradation 11 6 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
L-glutamate degradation VII (to butanoate) 12 3 1
ethene biosynthesis V (engineered) 25 18 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
peptidoglycan recycling I 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
Bifidobacterium shunt 15 12 1
L-tryptophan degradation III (eukaryotic) 15 6 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
streptomycin biosynthesis 18 2 1
superpathway of anaerobic sucrose degradation 19 14 1
superpathway of dTDP-glucose-derived O-antigen building blocks biosynthesis 19 5 1
platensimycin biosynthesis 26 6 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 12 1
mycolate biosynthesis 205 20 3
superpathway of mycolate biosynthesis 239 21 3