Experiment set11IT007 for Burkholderia phytofirmans PsJN

Compare to:

Protocatechuic Acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Protocatechuic Acid (10 mM)
Culturing: BFirm_ML3_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 2.5 generations
By: Allie Pearson on 8/26/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 4 genes in this experiment

For carbon source Protocatechuic Acid in Burkholderia phytofirmans PsJN

For carbon source Protocatechuic Acid across organisms

SEED Subsystems

Subsystem #Specific
Purine conversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
adenosine nucleotides degradation III 1 1 1
3-oxoadipate degradation 2 2 1
acetoacetate degradation (to acetyl CoA) 2 2 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glyoxylate cycle 6 6 2
ketolysis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
polyhydroxybutanoate biosynthesis 3 3 1
partial TCA cycle (obligate autotrophs) 8 7 2
nitrogen remobilization from senescing leaves 8 6 2
(2S)-ethylmalonyl-CoA biosynthesis 4 3 1
oleate β-oxidation 35 29 8
TCA cycle V (2-oxoglutarate synthase) 9 8 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 2
TCA cycle II (plants and fungi) 9 7 2
TCA cycle VII (acetate-producers) 9 7 2
valproate β-oxidation 9 6 2
TCA cycle VI (Helicobacter) 9 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 3
2-methyl-branched fatty acid β-oxidation 14 9 3
2-methylcitrate cycle I 5 5 1
adipate degradation 5 5 1
TCA cycle I (prokaryotic) 10 8 2
adipate biosynthesis 5 4 1
ketogenesis 5 4 1
TCA cycle III (animals) 10 7 2
glutaryl-CoA degradation 5 3 1
pyruvate fermentation to acetone 5 3 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
isopropanol biosynthesis (engineered) 5 2 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
reductive TCA cycle I 11 6 2
catechol degradation III (ortho-cleavage pathway) 6 6 1
superpathway of glyoxylate bypass and TCA 12 10 2
2-methylcitrate cycle II 6 5 1
fatty acid salvage 6 5 1
L-isoleucine degradation I 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
reductive TCA cycle II 12 6 2
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
jasmonic acid biosynthesis 19 5 3
superpathway of salicylate degradation 7 7 1
acetyl-CoA fermentation to butanoate 7 6 1
benzoyl-CoA degradation I (aerobic) 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
4-methylcatechol degradation (ortho cleavage) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
pyruvate fermentation to butanoate 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
mixed acid fermentation 16 13 2
2-deoxy-D-ribose degradation II 8 5 1
pyruvate fermentation to butanol I 8 4 1
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
phenylacetate degradation I (aerobic) 9 9 1
aromatic compounds degradation via β-ketoadipate 9 9 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
methylaspartate cycle 19 11 2
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
3-phenylpropanoate degradation 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
methyl tert-butyl ether degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of phenylethylamine degradation 11 11 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 17 2
toluene degradation III (aerobic) (via p-cresol) 11 7 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 8 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 10 1
glycerol degradation to butanol 16 11 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 10 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 3 1
mandelate degradation to acetyl-CoA 18 12 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 18 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 5 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of aerobic toluene degradation 30 14 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 21 1
superpathway of cholesterol biosynthesis 38 5 1
superpathway of L-lysine degradation 43 11 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1