Experiment set11IT004 for Burkholderia phytofirmans PsJN

Compare to:

Azelaic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Azelaic acid (10 mM)
Culturing: BFirm_ML3_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 3.4 generations
By: Allie Pearson on 8/26/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 4 genes in this experiment

For carbon source Azelaic acid in Burkholderia phytofirmans PsJN

For carbon source Azelaic acid across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
oleate β-oxidation 35 29 16
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 9 5
fatty acid salvage 6 5 2
valproate β-oxidation 9 6 3
L-isoleucine degradation I 6 4 2
propanoate fermentation to 2-methylbutanoate 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
pyruvate fermentation to butanoate 7 3 2
L-valine degradation I 8 5 2
pyruvate fermentation to butanol I 8 4 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
phenylacetate degradation I (aerobic) 9 9 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 5 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
3-phenylpropanoate degradation 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 11 2
6-gingerol analog biosynthesis (engineered) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 8 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 10 2
glycerol degradation to butanol 16 11 2
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 10 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
toluene degradation VI (anaerobic) 18 3 2
methyl tert-butyl ether degradation 10 3 1
gallate degradation III (anaerobic) 11 5 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 3
superpathway of testosterone and androsterone degradation 28 6 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 18 1