Experiment set10S395 for Enterobacter sp. TBS_079

Compare to:

Glycine nitrogen source

Group: nitrogen source
Media: RCH2_defined_Glucose_noNitrogen + Glycine (10 mM)
Culturing: Enterobacter_TBS_079_ML3, microplate, Aerobic, at 30 (C)
By: Robin on 6/19/24
Media components: 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 20 mM D-Glucose, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 11 genes in this experiment

For nitrogen source Glycine in Enterobacter sp. TBS_079

For nitrogen source Glycine across organisms

SEED Subsystems

Subsystem #Specific
Coenzyme B12 biosynthesis 4
Glycine and Serine Utilization 3
Glycine cleavage system 3
Photorespiration (oxidative C2 cycle) 3
Pyruvate Alanine Serine Interconversions 2
Methionine Biosynthesis 1
Orphan regulatory proteins 1
Purine nucleotide synthesis regulator 1
Serine-glyoxylate cycle 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
glycine biosynthesis III 1 1 1
glycine cleavage 3 3 2
glycine degradation 3 3 2
glycine biosynthesis II 3 3 2
L-cysteine degradation II 3 3 2
D-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
glycine betaine degradation III 7 4 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 4 3
L-methionine biosynthesis II 6 5 2
L-methionine salvage from L-homocysteine 3 2 1
L-serine biosynthesis II 4 3 1
L-mimosine degradation 8 4 2
L-methionine biosynthesis III 4 2 1
glutathione-mediated detoxification I 8 3 2
folate transformations III (E. coli) 9 9 2
L-methionine biosynthesis I 5 5 1
folate transformations II (plants) 11 10 2
folate transformations I 13 9 2
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
superpathway of L-homoserine and L-methionine biosynthesis 8 8 1
purine nucleobases degradation II (anaerobic) 24 13 3
superpathway of S-adenosyl-L-methionine biosynthesis 9 9 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 9 1
reductive glycine pathway of autotrophic CO2 fixation 9 6 1
photorespiration I 9 5 1
photorespiration III 9 5 1
photorespiration II 10 6 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 10 1
superpathway of L-methionine salvage and degradation 16 7 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 18 1
aspartate superpathway 25 24 1