Experiment set10H38 for Pseudomonas stutzeri RCH2

Compare to:

Tween 20 carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Tween 20 (1 vol%), pH=7.2
Culturing: psRCH2_ML7c, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 5.7 generations
By: Kelly on 2/24/2014
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 9 genes in this experiment

For carbon source Tween 20 in Pseudomonas stutzeri RCH2

For carbon source Tween 20 across organisms

SEED Subsystems

Subsystem #Specific
Orphan regulatory proteins 2
Biotin biosynthesis 1
Photorespiration (oxidative C2 cycle) 1
Serine-glyoxylate cycle 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
glycolate and glyoxylate degradation II 2 2 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
fatty acid salvage 6 6 2
glyoxylate cycle 6 5 2
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
phytol degradation 4 3 1
chitin deacetylation 4 2 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
octane oxidation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
superpathway of glyoxylate bypass and TCA 12 11 2
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
superpathway of glycol metabolism and degradation 7 5 1
ceramide degradation by α-oxidation 7 2 1
D-xylose degradation IV 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
L-arabinose degradation IV 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
oleate β-oxidation 35 30 4
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 2
2-methyl-branched fatty acid β-oxidation 14 10 1
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
superpathway of pentose and pentitol degradation 42 7 1