Experiment set9IT006 for Escherichia coli BW25113

Compare to:

LB Anaerobic with Irgasan 0.000000625 mM

Group: stress
Media: LB + Irgasan (6.25E-04 mM)
Culturing: Keio_ML9a, 96 deep-well microplate; Multitron, Anaerobic, at 37 (C), shaken=0 rpm
By: Hans_Hualan on 7/20/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 9 genes in this experiment

For stress Irgasan in Escherichia coli BW25113

For stress Irgasan across organisms

SEED Subsystems

Subsystem #Specific
Respiratory dehydrogenases 1 3
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 2
Biotin biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
di-trans,poly-cis-undecaprenyl phosphate biosynthesis 2 2 1
glycerol-3-phosphate shuttle 2 2 1
glycerol-3-phosphate to hydrogen peroxide electron transport 2 2 1
glycerol-3-phosphate to fumarate electron transfer 2 2 1
glycerophosphodiester degradation 2 2 1
nitrate reduction IX (dissimilatory) 2 2 1
phosphatidylcholine acyl editing 4 2 2
γ-linolenate biosynthesis II (animals) 2 1 1
cinnamoyl-CoA biosynthesis 2 1 1
glycerol-3-phosphate to cytochrome bo oxidase electron transfer 2 1 1
glycerol 3-phosphate to cytochrome aa3 oxidase electron transfer 2 1 1
linoleate biosynthesis II (animals) 2 1 1
glycerol degradation I 3 3 1
sn-glycerol 3-phosphate anaerobic respiration 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis I 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
heptadecane biosynthesis 3 1 1
glycerol and glycerophosphodiester degradation 4 4 1
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
pinosylvin metabolism 4 1 1
sporopollenin precursors biosynthesis 18 5 4
polyisoprenoid biosynthesis (E. coli) 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
octane oxidation 5 2 1
phospholipases 5 1 1
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
mycobactin biosynthesis 11 3 1
anandamide biosynthesis I 12 4 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1