Experiment set8S698 for Pseudomonas segetis P6

Compare to:

Plant=Zea_mays; PlantTreatment=NaCl_and_Fusarium; Sample=rhizosphere; GrowthSubstrate=sand_vermiculite_perlite_mix; Collection=16_outgrowth_LB; Time=7_days

Group: in planta
Media: + Plant=Zea_mays; PlantTreatment=NaCl_and_Fusarium; Sample=rhizosphere; GrowthSubstrate=sand_vermiculite_perlite_mix; Collection=16_outgrowth_LB; Time=7_days
Culturing: Pseudo_segetis_P6_ML4b, pot, at 24 (C), (Solid)
By: Marta Torres on 11-Jul-24

Specific Phenotypes

For 11 genes in this experiment

For in planta Plant=Zea_mays; PlantTreatment=NaCl_and_Fusarium; Sample=rhizosphere; GrowthSubstrate=sand_vermiculite_perlite_mix; Collection=16_outgrowth_LB; Time=7_days in Pseudomonas segetis P6

For in planta Plant=Zea_mays; PlantTreatment=NaCl_and_Fusarium; Sample=rhizosphere; GrowthSubstrate=sand_vermiculite_perlite_mix; Collection=16_outgrowth_LB; Time=7_days across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Protocatechuate branch of beta-ketoadipate pathway 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Sialic Acid Metabolism 1
Terminal cytochrome d ubiquinol oxidases 1
Terminal cytochrome oxidases 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 1
aerobic respiration III (alternative oxidase pathway) 3 3 1
phenylacetate degradation I (aerobic) 9 9 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 10 2
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 2
oleate β-oxidation 35 30 6
fatty acid salvage 6 6 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
pyruvate fermentation to butanoate 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-valine degradation I 8 5 1
pyruvate fermentation to butanol I 8 4 1
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 1
3-phenylpropanoate degradation 10 3 1
gallate degradation III (anaerobic) 11 5 1
Spodoptera littoralis pheromone biosynthesis 22 3 2
L-glutamate degradation VII (to butanoate) 12 4 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 9 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1