Experiment set8IT054 for Escherichia coli BW25113

Compare to:

LB Aerobic with Irgasan 0.0000003125 mM

Group: stress
Media: LB + Irgasan (3.13E-04 mM)
Culturing: Keio_ML9a, 96 deep-well microplate; Multitron, Aerobic, at 37 (C), shaken=750 rpm
By: Hans_Hualan on 7/20/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 36 genes in this experiment

For stress Irgasan in Escherichia coli BW25113

For stress Irgasan across organisms

SEED Subsystems

Subsystem #Specific
Coenzyme A Biosynthesis 3
DNA repair, bacterial 2
Orphan regulatory proteins 2
Type IV pilus 2
Alkylphosphonate utilization 1
Biotin biosynthesis 1
CBSS-562.2.peg.5158 SK3 including 1
Capsular heptose biosynthesis 1
Chitin and N-acetylglucosamine utilization 1
Glycine and Serine Utilization 1
LOS core oligosaccharide biosynthesis 1
Lipoic acid metabolism 1
Listeria phi-A118-like prophages 1
Peptidoglycan Biosynthesis 1
Proteasome bacterial 1
Proteolysis in bacteria, ATP-dependent 1
Pyruvate Alanine Serine Interconversions 1
Selenocysteine metabolism 1
Sialic Acid Metabolism 1
Threonine anaerobic catabolism gene cluster 1
Universal stress protein family 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
β-alanine biosynthesis III 1 1 1
cis-cyclopropane fatty acid (CFA) biosynthesis 1 1 1
pseudouridine degradation 2 2 1
polyphosphate metabolism 2 2 1
phosphatidylcholine acyl editing 4 2 2
lipoate salvage I 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
cinnamoyl-CoA biosynthesis 2 1 1
sterculate biosynthesis 2 1 1
L-selenocysteine biosynthesis I (bacteria) 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
heptadecane biosynthesis 3 1 1
alkane biosynthesis I 3 1 1
alkane biosynthesis II 3 1 1
phosphopantothenate biosynthesis I 4 4 1
phytol degradation 4 3 1
phosphopantothenate biosynthesis III (archaea) 4 2 1
pinosylvin metabolism 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
GDP-D-glycero-α-D-manno-heptose biosynthesis 4 1 1
wax esters biosynthesis II 4 1 1
lipoate salvage II 4 1 1
superpathway of coenzyme A biosynthesis I (bacteria) 9 9 2
sporopollenin precursors biosynthesis 18 5 4
ADP-L-glycero-β-D-manno-heptose biosynthesis 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
phospholipases 5 1 1
ppGpp metabolism 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
superpathway of coenzyme A biosynthesis II (plants) 10 5 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
mycobactin biosynthesis 11 3 1
anandamide biosynthesis I 12 4 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1
mycolate biosynthesis 205 25 3
superpathway of mycolate biosynthesis 239 26 3