Experiment set7IT055 for Pseudomonas putida KT2440

Compare to:

L-Lysine 10 mM carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + L-Lysine (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 6.3 generations
By: Mitchell Thompson on 4/26/18
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 23 genes in this experiment

For carbon source L-Lysine in Pseudomonas putida KT2440

For carbon source L-Lysine across organisms

SEED Subsystems

Subsystem #Specific
Lysine degradation 3
Arginine and Ornithine Degradation 1
Choline and Betaine Uptake and Betaine Biosynthesis 1
Cobalt-zinc-cadmium resistance 1
Glycine cleavage system 1
Glycolate, glyoxylate interconversions 1
Orphan regulatory proteins 1
Photorespiration (oxidative C2 cycle) 1
Polyamine Metabolism 1
Pyruvate Alanine Serine Interconversions 1
Respiratory dehydrogenases 1 1
Universal stress protein family 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
urea degradation I 3 2 2
L-lysine degradation IV 5 5 3
indole-3-acetate biosynthesis III (bacteria) 2 2 1
glycolate and glyoxylate degradation II 2 2 1
4-aminobutanoate degradation III 2 2 1
glutarate degradation 2 2 1
L-lysine degradation V 9 9 4
cyanuric acid degradation II 5 3 2
cyanuric acid degradation I 5 2 2
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
L-citrulline degradation 3 3 1
ethanol degradation III 3 2 1
hypotaurine degradation 3 2 1
cyanate degradation 3 2 1
superpathway of allantoin degradation in yeast 6 3 2
glycolate and glyoxylate degradation III 3 1 1
histamine degradation 3 1 1
CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis 3 1 1
glycolate and glyoxylate degradation I 4 4 1
L-arginine degradation V (arginine deiminase pathway) 4 4 1
glycine betaine degradation I 8 6 2
phytol degradation 4 3 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 3 1
putrescine degradation III 4 3 1
creatinine degradation I 4 2 1
fatty acid α-oxidation I (plants) 4 2 1
superpathway of atrazine degradation 8 3 2
mitochondrial NADPH production (yeast) 5 4 1
octane oxidation 5 4 1
creatinine degradation II 5 3 1
uracil degradation III 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
dopamine degradation 5 2 1
L-lysine degradation X 6 5 1
3-methyl-branched fatty acid α-oxidation 6 3 1
L-lysine degradation III 6 2 1
alkane oxidation 6 1 1
superpathway of L-lysine degradation 43 23 7
noradrenaline and adrenaline degradation 13 8 2
superpathway of glycol metabolism and degradation 7 6 1
L-lysine degradation I 7 5 1
serotonin degradation 7 4 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
aromatic biogenic amine degradation (bacteria) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of CDP-glucose-derived O-antigen building blocks biosynthesis 8 1 1
photorespiration I 9 6 1
photorespiration III 9 6 1
L-lysine degradation II (L-pipecolate pathway) 9 5 1
allantoin degradation IV (anaerobic) 9 2 1
photorespiration II 10 7 1