Experiment set7IT045 for Pseudomonas putida KT2440

Compare to:

Valerolactam 10 mM carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 2-Piperidinone (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 6.2 generations
By: Mitchell Thompson on 4/25/18
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 15 genes in this experiment

For carbon source 2-Piperidinone in Pseudomonas putida KT2440

For carbon source 2-Piperidinone across organisms

SEED Subsystems

Subsystem #Specific
Hydantoin metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Cobalt-zinc-cadmium resistance 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Polyhydroxybutyrate metabolism 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glutarate degradation 2 2 2
L-glutamate degradation I 1 1 1
superpathway of 4-aminobutanoate degradation 3 3 2
4-aminobutanoate degradation II 2 2 1
4-aminobutanoate degradation III 2 2 1
4-aminobutanoate degradation I 2 2 1
L-lysine degradation IV 5 5 2
L-alanine degradation II (to D-lactate) 3 3 1
L-lysine degradation X 6 5 2
4-aminobutanoate degradation IV 3 2 1
N-methylpyrrolidone degradation 3 1 1
ethene biosynthesis IV (engineered) 3 1 1
L-lysine degradation I 7 5 2
GABA shunt II 4 3 1
GABA shunt I 4 2 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
creatinine degradation II 5 3 1
glutaryl-CoA degradation 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 9 2
pyruvate fermentation to butanol II (engineered) 6 4 1
L-lysine degradation III 6 2 1
superpathway of L-arginine and L-ornithine degradation 13 11 2
pyruvate fermentation to butanoate 7 3 1
4-aminobutanoate degradation V 7 2 1
L-glutamate degradation XI (reductive Stickland reaction) 7 2 1
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
4-hydroxyphenylacetate degradation 8 2 1
TCA cycle IV (2-oxoglutarate decarboxylase) 9 8 1
photorespiration I 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
methyl tert-butyl ether degradation 10 2 1
pyruvate fermentation to hexanol (engineered) 11 8 1
nicotine degradation II (pyrrolidine pathway) 11 6 1
L-glutamate degradation VII (to butanoate) 12 3 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
superpathway of L-lysine degradation 43 23 3
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
nicotine degradation I (pyridine pathway) 17 5 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
methylaspartate cycle 19 10 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
oleate β-oxidation 35 30 1