Experiment set6S91 for Pseudomonas sp. RS175

Compare to:

methyl ferulate carbon source

Group: carbon source
Media: MME_noCarbon + methyl ferulate (2 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C)
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 18 genes in this experiment

For carbon source methyl ferulate in Pseudomonas sp. RS175

For carbon source methyl ferulate across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance Efflux Pumps 2
Arginine and Ornithine Degradation 1
Copper homeostasis 1
Entner-Doudoroff Pathway 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Glycolysis and Gluconeogenesis 1
Multidrug efflux pump in Campylobacter jejuni (CmeABC operon) 1
Phenylpropanoid compound degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamine biosynthesis I 1 1 1
vanillin and vanillate degradation II 2 2 1
trehalose degradation II (cytosolic) 2 2 1
ammonia assimilation cycle I 2 2 1
trehalose degradation I (low osmolarity) 2 1 1
ammonia assimilation cycle II 2 1 1
ammonia assimilation cycle III 3 3 1
trehalose degradation V 3 2 1
GDP-α-D-glucose biosynthesis 3 2 1
superpathway of ammonia assimilation (plants) 3 2 1
L-aspartate degradation III (anaerobic) 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
trehalose degradation IV 3 1 1
nylon-6 oligomer degradation 7 3 2
queuosine biosynthesis I (de novo) 4 4 1
sucrose degradation III (sucrose invertase) 4 3 1
L-arginine degradation II (AST pathway) 5 5 1
glucose and glucose-1-phosphate degradation 5 4 1
glycogen degradation II 6 5 1
UDP-N-acetyl-D-glucosamine biosynthesis II 6 4 1
UDP-N-acetyl-D-galactosamine biosynthesis II 7 5 1
L-glutamate and L-glutamine biosynthesis 7 5 1
2-carboxy-1,4-naphthoquinol biosynthesis 7 1 1
glycogen degradation I 8 7 1
sucrose biosynthesis II 8 6 1
chitin biosynthesis 9 6 1
1,3-propanediol biosynthesis (engineered) 9 4 1
superpathway of demethylmenaquinol-8 biosynthesis I 9 2 1
superpathway of demethylmenaquinol-6 biosynthesis I 9 1 1
superpathway of demethylmenaquinol-9 biosynthesis 9 1 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of menaquinol-8 biosynthesis I 10 3 1
superpathway of menaquinol-12 biosynthesis 10 2 1
superpathway of menaquinol-11 biosynthesis 10 2 1
superpathway of menaquinol-13 biosynthesis 10 2 1
superpathway of menaquinol-7 biosynthesis 10 2 1
superpathway of menaquinol-9 biosynthesis 10 2 1
superpathway of menaquinol-10 biosynthesis 10 2 1
superpathway of menaquinol-6 biosynthesis 10 2 1
glycolysis III (from glucose) 11 9 1
homolactic fermentation 12 10 1
Bifidobacterium shunt 15 15 1
superpathway of phylloquinol biosynthesis 15 2 1
heterolactic fermentation 18 16 1
superpathway of chorismate metabolism 59 43 1