Experiment set6S86 for Pseudomonas sp. RS175

Compare to:

4-Acetoxy-3-methoxycinnamic acid carbon source

Group: carbon source
Media: MME_noCarbon + 4-Acetoxy-3-methoxycinnamic acid (2 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C)
By: Andrew Frank on 1/31/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 14 genes in this experiment

For carbon source 4-Acetoxy-3-methoxycinnamic acid in Pseudomonas sp. RS175

For carbon source 4-Acetoxy-3-methoxycinnamic acid across organisms

SEED Subsystems

Subsystem #Specific
Glutathione-dependent pathway of formaldehyde detoxification 3
Copper homeostasis 2
Multidrug Resistance Efflux Pumps 2
Phenylpropanoid compound degradation 2
Multidrug efflux pump in Campylobacter jejuni (CmeABC operon) 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetaldehyde biosynthesis I 1 1 1
formaldehyde oxidation II (glutathione-dependent) 3 3 2
ethanol degradation I 2 2 1
vanillin and vanillate degradation II 2 2 1
pyruvate fermentation to ethanol II 2 1 1
ethanol degradation II 3 3 1
L-leucine degradation III 3 2 1
methylglyoxal degradation I 3 2 1
pyruvate fermentation to ethanol I 3 2 1
L-isoleucine degradation II 3 2 1
methylglyoxal degradation VIII 3 2 1
L-valine degradation II 3 2 1
pyruvate fermentation to ethanol III 3 2 1
L-methionine degradation III 3 1 1
phytol degradation 4 3 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
salidroside biosynthesis 4 2 1
ethanolamine utilization 5 5 1
acetylene degradation (anaerobic) 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
protein S-nitrosylation and denitrosylation 5 3 1
(S)-propane-1,2-diol degradation 5 2 1
phenylethanol biosynthesis 5 2 1
superpathway of C1 compounds oxidation to CO2 12 5 2
noradrenaline and adrenaline degradation 13 8 2
3-methylbutanol biosynthesis (engineered) 7 6 1
serotonin degradation 7 4 1
superpathway of methylglyoxal degradation 8 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
L-tryptophan degradation V (side chain pathway) 13 1 1
mixed acid fermentation 16 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
heterolactic fermentation 18 16 1
superpathway of anaerobic sucrose degradation 19 15 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of N-acetylneuraminate degradation 22 15 1