Experiment set6IT060 for Pseudomonas putida KT2440

Compare to:

p-Coumaric acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + p-Coumaric acid (10 mM)
Culturing: Putida_ML5, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.8 generations
By: Mitch on 12/8/17
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 14 genes in this experiment

For carbon source p-Coumaric acid in Pseudomonas putida KT2440

For carbon source p-Coumaric acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 8
Chloroaromatic degradation pathway 3
Catechol branch of beta-ketoadipate pathway 2
Phenylpropanoid compound degradation 1
p-Hydroxybenzoate degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
aromatic compounds degradation via β-ketoadipate 9 9 5
toluene degradation III (aerobic) (via p-cresol) 11 7 6
catechol degradation III (ortho-cleavage pathway) 6 6 3
vanillin and vanillate degradation II 2 2 1
4-hydroxybenzoate biosynthesis IV (plants) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
vanillin and vanillate degradation I 2 1 1
superpathway of salicylate degradation 7 7 3
4-methylcatechol degradation (ortho cleavage) 7 5 3
4-hydroxybenzoate biosynthesis III (plants) 5 5 2
4-coumarate degradation (aerobic) 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
ferulate degradation 3 3 1
benzoyl-CoA biosynthesis 3 3 1
ketolysis 3 3 1
umbelliferone biosynthesis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
4-hydroxymandelate degradation 6 2 2
3-chlorotoluene degradation II 3 1 1
toluene degradation to benzoate 3 1 1
caffeoylglucarate biosynthesis 3 1 1
1,3-dimethylbenzene degradation to 3-methylbenzoate 3 1 1
1,4-dimethylbenzene degradation to 4-methylbenzoate 3 1 1
D-phenylglycine degradation 3 1 1
catechol degradation to β-ketoadipate 4 4 1
trans-caffeate degradation (aerobic) 4 3 1
4-chlorobenzoate degradation 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
xanthohumol biosynthesis 4 1 1
4-methylphenol degradation to protocatechuate 4 1 1
naringenin biosynthesis (engineered) 4 1 1
hydroxycinnamate sugar acid ester biosynthesis 4 1 1
benzoate biosynthesis II (CoA-independent, non-β-oxidative) 4 1 1
superpathway of aerobic toluene degradation 30 13 7
oleate β-oxidation 35 30 8
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 8
valproate β-oxidation 9 7 2
mandelate degradation to acetyl-CoA 18 11 4
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
gallate degradation II 5 4 1
glutaryl-CoA degradation 5 3 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
bisphenol A degradation 5 2 1
ethylbenzene degradation (anaerobic) 5 1 1
flavonoid biosynthesis 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
phaselate biosynthesis 5 1 1
chlorogenic acid biosynthesis II 5 1 1
pyruvate fermentation to acetone 5 1 1
mandelate degradation I 5 1 1
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
4-coumarate degradation (anaerobic) 6 3 1
6-gingerol analog biosynthesis (engineered) 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
salicin biosynthesis 6 1 1
jasmonic acid biosynthesis 19 4 3
coumarins biosynthesis (engineered) 13 4 2
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
pyruvate fermentation to butanoate 7 3 1
spongiadioxin C biosynthesis 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
polybrominated dihydroxylated diphenyl ethers biosynthesis 8 2 1
2-methylpropene degradation 8 2 1
mevalonate pathway III (Thermoplasma) 8 1 1
chlorogenic acid biosynthesis I 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
phenylacetate degradation I (aerobic) 9 9 1
4-oxopentanoate degradation 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
avenanthramide biosynthesis 9 1 1
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of vanillin and vanillate degradation 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
suberin monomers biosynthesis 20 4 2
methyl tert-butyl ether degradation 10 2 1
rosmarinic acid biosynthesis I 10 2 1
pinoresinol degradation 10 2 1
curcuminoid biosynthesis 10 1 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of phenylethylamine degradation 11 11 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
toluene degradation IV (aerobic) (via catechol) 13 6 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 13 3
superpathway of rosmarinic acid biosynthesis 14 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
flavonoid di-C-glucosylation 15 3 1
monolignol biosynthesis 15 1 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
Amaryllidacea alkaloids biosynthesis 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1